US009098335B2

a2 United States Patent
Muthiah et al.

US 9,098,335 B2
Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR MANAGING (56) References Cited
SPILLOVER LIMITS IN A MULTI-CORE
SYSTEM U.S. PATENT DOCUMENTS
5,928,339 A 7/1999 Nishikawa
(75) Inventors: Manikam Muthiah, Karnataka (IN); 6,157,928 A 12/2000 Sprenger et al.
Josephine Suganthi, Sunnyvale, CA (Continued)
(US); Sandeep Kamath, Santa Clara,
CA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: CITRIX SYSTEMS, INC., Fort EP 0605339 A2 7/1994
Lauderdale, FL (US) EP 1441 487 7/2004
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 US Office Action on 099011-2657 DTD Mar. 1, 2013.
U.S.C. 154(b) by 77 days. (Continued)
(21) Appl. No.: 12/976,697 Primary Examiner — Shirpal Khajuria
. Assistant Examiner — Farhad Ali
(22) Filed: Dec. 22, 2010 (74) Attorney, Agent, or Firm — Foley & Lardner LLP;
. L. Christopher J. McKenna
(65) Prior Publication Data
US 2011/0149737 A1 Jun. 23, 2011 &7 ABSTRACT
The present disclosure is directed to a system for managing
spillover via a plurality of cores of a multi-core device inter-
Related U.S. Application Data mediary to a plurality of clients and one or more services. The
system may include a device intermediary to a plurality of
(60) Provisional application No. 61/289,536, filed on Dec. clients and one or more services. The system may include a
23, 2009. spillover limit of a resource. The device may also include a
plurality of packet engines operating on a corresponding core
(51) Int.ClL of a plurality of cores of the device. The system may include
GOIR 3108 (2006.01) a pool manager allocating to each of the plurality of packet
GO6F 11/00 (2006.01) engines a number of resource uses from an exclusive quota
(Continued) pool and shared quota pool based on the spillover limit. The
device may also include a virtual server of a packet engine of
(52) US.CL the plurality of packet engines. The virtual server manages
CPC ., GO6F 9/5011 (2013.01); HO4L 47/19 client requests to one or more services. The device determines
(2013.01); HO4L 67/1002 (2013.01); HO4L that the number of resources used by a packet engine of the
67/1025 (2013.01); GO6F 2209/504 (2013.01); plurality of packet engine has reached the allocated number of
GO6F 2209/5011 (2013.01); YO2B 60/142 resource uses of the packet engine, and responsive to the
(2013.01) determination, forwards to a backup virtual server a request
(58) Field of Classification Search of a client of the plurality of clients received by the device for
CPC e HO4L 47/1 9, GO6F 9/2011 the virtual server.
USPC ot 370/235, 392, 401

See application file for complete search history.

1201

18 Claims, 29 Drawing Sheets

identify a limit for a number of uses of a resource
across a plurality of PPEs

1203

|

sstablish an exclusive quota pool for the resource
based on the limit

1205

!

establish a shared quota pool for the resource
based on the limit

1207

|

establish a batch number of uses to be provided from
the shared quota pool

1209

|

allocate an exclusive number of uses from the exclusive quota
pool to a PPE operating on a core

US 9,098,335 B2

Page 2
(51) Int.ClL 2008/0077792 Al 3/2008 Mann
2008/0123525 Al 5/2008 Miyoshi et al.
GO8C 15/00 (2006.01) 2008/0181213 Al 7/2008 Ovsiannikov et al.
H04J 1/16 (2006.01) 2008/0225718 Al 9/2008 Raja et al.
H04J 3/14 (2006.01) 2008/0250116 AL1* 10/2008 BrOWN ...cocoovvcrrreonannn. 709/213
HO4L 1/00 (2006.01) 2008/0263209 Al 10/2008 Pisharody et al.
HO4L 1226 (2006.01) 2009/0049189 Al 2/2009 Zhu et al.
mos 1225 (006 vty Al 2000 Gl
owler
HO4L 12/56 (2006.01) 2009/0240821 Al 9/2000 Juncker et al.
GO6F 9/50 (2006.01) 2009/0271515 Al 10/2009 Iyengar et al.
HO4L 12/801 (2013.01) 2009/0271792 Al 10/2009 Mills
2009/0271798 Al 10/2009 Iyengar et al.
HO4L 29/08 (2006.01) 2009/0287846 Al 112009 Iyengar et al.
. 2010/0100877 Al* 4/2010 Greeneetal.cceevennee. 718/1
(56) References Cited 2010/0118869 Al 52010 Lietal.
2010/0131660 Al 5/2010 Dec et al.
U.S. PATENT DOCUMENTS 2010/0138534 Al 6/2010 Mutnuru et al.
2010/0290473 Al 112010 Enduri et al.
6,421,711 Bl 7/2002 Blumenau et al. 2011/0119390 A1 5/2011 Leech et al.
6,449,251 Bl 9/2002 Awadallah etal. 2011/0161506 Al 6/2011 Dickerson
7,069,271 Bl 6/2006 Fadel et al. 2011/0225594 Al 9/2011 Iyengar et al.
7,243,161 Bl 7/2007 Tappan et al. 2011/0276695 Al 11/2011 Maldaner
7,274,706 Bl 9/2007 Nguyen et al. 2012/0254384 Al 10/2012 Tremblay
7,305,429 B2 12/2007 Borella
7,310,667 B2 12/2007 Banerjee et al. OTHER PUBLICATIONS
7,346,909 Bl 3/2008 Eldar et al.
7,386,881 B2 6/2008 Swander et al. US Office Action on 099011-3023 DTD Mar. 4, 2013.
7472,201 B1 12/2008 Aitken International Preliminary Report on Patentability on PCT/US2010/
7,493,371 Bl 2/2009 Bali et al. 061755 dated Jul. 5, 2012.
7,526,562 Bl 4/2009 Samprathi et al. International Preliminary Report on Patentability on PCT/US2010/
7,554,992 B2 6;2009 Klm;llra etal. | 061794 dated Jul. 5. 2012.
7,630,385 B2 12/2009 Oyadomari et al. . ’
7640023 B2 122009 Ma et al. Izr(l)tfinatlonal Search Report on PCT/US2010/061755 dated Sep. 20,
;:;gg:é;g E% ggg}? gi(s)}}l/?ir(e):? Zlét al. International Search Report on PCT/US2010/061794 dated Sep. 23,
7,986,629 Bl 7/2011 Ferguson et al. 2011 o
8,166,175 B2 4/2012 Schmieder et al. Written Opinion on PCT/US2010/061755 dated Sep. 20, 2011.
8,180,921 B2 5/2012 Maynard Written Opinion on PCT/US2010/061794 dated Sep. 23, 2011.
8,243,589 Bl 8/2012 Trost et al. European Search Report issued Mar. 19, 2013 in European Patent
8,255,528 B2 8/2012 Raja et al. Application No. 10840110.0.
8,260,986 B2 9/2012 Arakawa et al. Westerland, Magnus, et al. “How to Enable Real-Time Streaming
8,327,017 Bl 12/2012 Trost et al. Protocol (RTSP) Traverse Network Address Translators (NAT) and
8,495,245 B2 7/2013 Busschbach Interact with Firewalls”” PacketVideo Network Solutions, Oct. 24,
2002/0103846 Al 8/2002 Zisapel et al. 2005,
%88%;85552;8 ﬁ} ?ggg% ﬁ(l:iia etal. Extended EP Search Report for Application No. 10840119.1 dated
2003/0097405 Al 5/2003 Laux etal. Jan. 22, 2014 (6 pages).
2003/0154306 Al 8/2003 Perry US Notice of Allowance forU.S. Appl No. 12/976,706 dated Sep. 12,
2003/0229697 Al 12/2003 Borella 2013.
2004/0018595 Al 1/2004 Rudolph et al. US Office Action for U.S. Appl. No. 12/976,710 dated Sep. 23,2013.
2004/0053693 Al 3/2004 An Chinese First Office Action for CN Application No. 2010800640830
2004/0120501 Al 6/2004 Celi et al. dated Jul. 1, 2014.
2004/0152439 Al 8/2004 Kimura et al. EP Examination Report for EP Application No. 10840110.0 dated
2004/0165602 Al 8/2004 Park etal. Tul. 9, 2014,
2004/0181595 Al 9/2004 Banerjee et al. First Office Action issued in Chinese Patent Application No.
2004/0233916 Al 11/2004 Takeuchi et al. 201080064445.6 on Jun. 13, 2014.
20050005169 AL 172005 Kelekar US Notice of Al forU.S. Appl. No. 12/976,710 dated Apr. 24
2006/0195611 Al 8/2006 Howe oticeot Atlowance Ior .. Appl. NO- ' CAAPL 22,
2007/0050613 Al 3/2007 Islam et al. 2014, _ .
2007/0180314 Al 8/2007 Kawashima et al. 714/15 Second Chinese Office Action for Application No. 201080064083.0
2007/0239886 Al 10/2007 Montemayor et al. dated Dec. 5, 2014.
2007/0258465 Al 11/2007 Maetal.
2008/0034120 A1 2/2008 Oyadomari et al. * cited by examiner

US 9,098,335 B2

Sheet 1 of 29

Aug. 4, 2015

U.S. Patent

ugQl 19AI0S

L= < T = |

o o o0
Emm———

q9Q} 19niag
o a +JoL
— NIOMIBN
egQl J19AIDg
8¢

VI ‘DId uzol 81D

qzot usiid

002
aouenddy
| : voi
. I1—H SIOMION

BZ0L Juelid

US 9,098,335 B2

Sheet 2 of 29

Aug. 4, 2015

U.S. Patent

uggQlL J19AIg

4901 19Al8g

©90} J9AIGg

MN .wN.m uzol 9o

.00¢ 002
aouejddy aoueyddy

ezol usld

=——2

US 9,098,335 B2

Sheet 3 of 29

Aug. 4, 2015

U.S. Patent

ugQ| JoAleg

q901 toAleg

uzol sl

I1 OIA

(991n8p uoneziundop)
S0z dduelddy 550 ddy

(921n8p uoneziRdO)
NVM
60z @ouey|ddy

o oo n

o 0D oo
zmmrm—

egQl JOAISS

BZ0L W3O

N4

US 9,098,335 B2

Sheet 4 of 29

Aug. 4, 2015

U.S. Patent

V90l 19A19G
Q61 soInIes
Buriojuow
901 JoAieg aouewlopad
161
sbe Bunioyuow
aouewouad
00¢
S61 souelddy
suibug Aoijod Jo1 r— .
__ %iomjoN em—: |
061 waysAs
ISEYNIET,
uoneolddy
o[} eyeq
uoneoyddy

arl ‘OId

¥01
NIOMION

20l u3id

0cl
Juaby JuslD

Sl eleQ

uoneoiddy

] JUBWUOIIAUT
Bunndwon

U.S. Patent Aug. 4, 2015 Sheet 5 of 29 US 9,098,335 B2

100
\ ﬁ\[128

*_’/
0S
Software
122 Client 120
[101 [Agent H-
CPU Main
Memory Storage
<€ l >
123
A Display
110 device(s) Installation Network
CTRL k Device Interface
126\ 1 124a-n _116 118
Keyboard Fg’;?/fg‘f

FIG. IE

U.S. Patent Aug. 4, 2015 Sheet 6 of 29 US 9,098,335 B2

101
140
Main -
Processor Cache
/-122
/O | /O |Memory Main
Port |Port P\0rt Memory /'—130b
N
103 I/0
Device
Bridge| 170
< >
/130a
1’0
Device

FIG. IF

U.S. Patent Aug. 4, 2015 Sheet 7 of 29 US 9,098,335 B2

101
/
PPU
P1 P2
P3 P(N)
FIG. 1G
101
K
CPU
I ~ for
GPU

FIG. IH

US 9,098,335 B2

Sheet 8 of 29

Aug. 4, 2015

U.S. Patent

Ve ‘OIAd
\/\ccw
99¢ sHod ¥9¢ C9¢C 29¢ ammmomen_ m
MIOMION Kowsy 10SS$9001d 10$s8920.1d | uondAioug |
JTARS
}JOMION
/ vee
_ auibug uondAioug
g€¥¢ 194nq Zve Jeunl
01z aulbug 19084 pajeiba)u|
.- Joke psads-ybiH —
0ce
EIEN!
[4%4
p— Jabeuepy
36z uoissaidwon . mmm subuzy | __—" ayoen
[0o0j0id-13INN dllod
L Z S9OIAIBS uowae(WalsAg
9le — 4 T
swelboid 1474 [A%4 oLe
BULIONUO UlleaH S80I |IBYS 1o N9

90¢
aJjemp.ieH

voc
aoedg

[ELIEY

4174
aoedg

Jas

US 9,098,335 B2

Sheet 9 of 29

Aug. 4, 2015

U.S. Patent

U901} JoAI0g

U0/Z 90IAISS

4901 1oAdeg

G0/z eoInies

€901 19AI9S

B0/Z 20IAIRS

FOL
NI0M}ON

qac¢ ‘DIA

002 @oueljddy

161
1usbe Buioyuow

062 M4 ddy

Q87 uoleleeooy

98¢ SNA

8¢ Buiyoims

282 dl 18uenuj

082 NdA 1SS

UG/ V JoAJagA

BG/Z \ JOAIBGA

¥OL
NIoMIaN

uzol w8l

ugel
weby usiD

qcol 1udlid

aoet
Wwaby wsiD

BZ01L U390

e0z1
waby wsiD

U.S. Patent Aug. 4, 2015 Sheet 10 of 29 US 9,098,335 B2

Client 102

user mode 303

Kernel mode 302

15t Program !
: App 1 App 2 322 :
| App N 5
i v A 4 \ 4 2
; 310a |
i monitoring E
i agent/script 197 ;
! Network
! Stack Streaming Client :
i 310 306 E
:L < > Collection Agent -
: 304 |
AP!/ data !
: structure 325 Acceleration i
E Program 302 '
X interceptor i
z 350 a
E Client Agent 120 i
| 310 |

FIG. 3

U.S. Patent

Aug. 4,

2015 Sheet 11 o

f29 US 9,098,335 B2

device 100 —\

virtualized environment 400

VIRTUALIZATION LAYER

Virtual Machine 406a Virtual Machine 406b Virtual Machine 406¢
Control
Operating Guest Guest
System Operating Operating
405 System System
Too|s 41 a ..J_Q.b.
Stack 404
————————————— - e T ekt B A
| Virtual 1 | Virtual | || Virtual 1! virtgal © || ! Vidual ! Virtoal
i Disk 1icPU |l1Disk ilcpu || !Disk !iCPU |
14422 114320 1||1442b jlasop || 14420 1432
1; ﬂk b
HYPERVISOR LAYER
4 h 4 Y
Hypervisor 401

HARDWARE LAYER

\ 4

Physical Disk(s) 428

Physical CPU(s) 421

FIG. 44

U.S. Patent Aug. 4, 2015 Sheet 12 of 29 US 9,098,335 B2

Computing Device 100a Computing Device 100b
Virtual Machine Virtual Virtual Machine Virtual
406a Machine 406b 406¢c Machine 406d
Control OS Guest Control OS Guest
405a Operating 405b Operating
System < > System
Management 410a Management 410b
component component
404a I 404a I
N SV jmm e Y
| Virtual | | Vitual 1
t 1 Resources ! : ! Resources
1 i
Hypervisor | _f1 9922722 | Hypervisor ||} 4320 4425
401a 401b
Physical Resources Physical Resources
421a, 428a 421b, 428b
Computing Device 100c
Virtual Machine 450e Virtual Machine
406f
Guest Operating System 410c
___________ 1.._____________7 Control OS
| Virtual Resources 432¢, 442¢ | 405¢
¥ Management
:] / component
404
Hypervisor 401 a

FIG. 4B

U.S. Patent

Intranet |IP 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

Aug. 4,2015 Sheet 13 of 29 US 9,098,335 B2
virtualized application delivery controller 450
vServer A 275a vServer A 275a
vServer A 275n vServer A 275n
SSL VPN 280 SSL VPN 280

Intranet IP 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

virtualized environment 400

computing device 100

FIG. 4C

U.S. Patent

515

Aug. 4, 2015 Sheet 14 of 29 US 9,098,335 B2
Functional
510C Parallelism
500
510A A/
510B! TCP
NwW 515
/0 SSL
Core 1 Core2 | Core3 | Core4d Core5 | Core 6 | Core7 Core N
000
505A 505B 505C 505D 505E S505F 505G 505N
Data
Parallelism
VIP L ViP3
275C NIC1
2754 1 VIR NIC2
2758
Corel | Core2 | Core3 Cored | Core 5 | Core6 | Core7 Core N
(-2~ -]
505A 505B 505C 505D 505E 505F 505G 505N
Flow-Based Data
Parall(iisy 520
515B 515C 513 e
ST5A sispj OF S15G SISN
Core 1 Core2 | Core3 Core 4 CoreS | Core 6 | Core7 Core N
o000
505A 505B 505C 505D S505E 505F 505G 505N

FIG. 54

U.S. Patent Aug. 4, 2015 Sheet 15 of 29 US 9,098,335 B2

545

Memory Bus 556
A A A A
Y Y Y Y
Core1 Core2 Core3 Core4 Coreb Core6 Core7 Core N
548A 5488 548C 548D 548E B48F 548G 548N
Packet Packet Packet Packet Packet Packet Packet Packet
Engine Engine Engine Engine Engine Engine Engine Engine
A B C) E F G N
r=1(oS I~ 7
Flow ' l Flow | Flow | l Flow ' Flow l Flow | l Flow l eeo Flow |
l Dist Dist Dist. Dist Dist Dist Dist Dist.
} 550 1 (1550 | |1 550 | [0 550 | |1 5500|1550 | |l 550 | 550
505A 5058 505C 505D 505E 505F 505G
A
A 4
RSS Module560 Flow Distributor
¢ 552
=
550" 560
| Fiow | NIC RSS Module
' Dlstnbutorl

FIG. 5B

US 9,098,335 B2

Sheet 16 of 29

Aug. 4, 2015

U.S. Patent

D€ DIA
—
| 0.8 |
085 oUoeD |29l “

NS0S DG60S 4508 3509 asos 0808 asos |} VS0S
°o) (2100 |04ju0D) |
N®10D /810D 98109 G9I0D poI0D £810) Zelon | 180D “
I |
I sue|d “
n [01U0D) _
N t----- -

G/G

US 9,098,335 B2

U.S. Patent Aug. 4, 2015 Sheet 17 of 29
Client Agent
120 b
- Client Agent
Client Agent
Client 102b 120n
120a - l
Client 102n

Client 102a \

Network
104

&

URL redirect
660

Connection management mechanism 610

/ Dynamic spillover ~._
4

Dynamic max connection H ; Dynamic max connection
threshold 620a Mon |t0r| ng threshold 6208
agents
Connection capacity] 1 | Connection capacity
625a-n 420A"N 625a’-n’
For services 270a-n For services 270a’-n’

vServer 275n

vServer 275a

Appliance 200

Service 270a’

Service 270a

Server 1063’

Server 106a

Service 270b’

Service 270b

Server 106b’

Server 106b

Service 270n’

Service 270n

Server 106n,

Server 106n

U.S. Patent

Aug. 4, 2015

Sheet 18 of 29

Establishing a first vServer on
the appliance

!

Establishing a dynamic
maximum connection threshold of
the first vServer Based on the
connection capacity of the services

Monitoring the status of the services
managed by the first vServer

|

Adjusting the dynamic maximum
connection threshold based on
a status of service and corresponding
connection capacity of the service

Receiving a transport
Layer connection request
From a client

Determining whether o

Step 725

Redirect URL to client

T

Step 745

Go To Step 810 to perform
dynamic connection threshold
management for the second
virtual server

Not the dynamic maximum
Connection threshold is

Establish second virtual
Server or provide redirect URL
To client?

Spillover l
to 2nd
Is client persistent /sticky

to first or a second virtual
erver?

US 9,098,335 B2

Step 705

Step 710

Step 715

Step 720

No

v Step 735

Request handled by the
First virtual server

A

request handled by the second
Virtual server

establish second virtual server and/or

Fig. 7

A

1st

Step 755

U.S. Patent Aug. 4, 2015 Sheet 19 of 29 US 9,098,335 B2

Client Agent
120b
. Client Agent
Client Agent
Client 102b 120n
120a -

Client 102n

Client 102a \

Network
104

e

URL redirect
660

Connection management mechanism 610

/ Dynamic spillovéf
Y

bandwicth threshold 820A Monitoring bandwidth threshold 8208

measured bandwidth 825A agents ég.o.A.'_N_ measured bandwidth 825B

bandwidth detector 802 l

vServer 275a vServer 275n

Appliance 200 |

Network
104’

/
Service 270a Service 270a’
Server 106a Server 106a’
Service 270b Service 270b’
Server 106b Server 106b’
Service 270n Service 2700’
_/ N
Server 106n Server 106n,

Fig. 54

U.S. Patent

Aug. 4, 2015

Sheet 20 of 29

US 9,098,335 B2

Establishing a first vServer on the appliance

Step 805

!

Establishing a bandwidth threshold of
the first vServer

Step 810

Monitoring the status of the services
managed by the first vServer

Step 815

monitoring the bandwidth used by the
first vServer; adjusting the
bandwidth threshold based on performance
or operational characteristics

Step 820

Receiving a client request,
such as a transport layer
connection request

Determining whether ©

Step 825

Redirect URL to client

?

not the bandwidth
threshold is reached/ or
exceeded 7

No

v Step 835

Request handled by the
First virtual server

Establish second virtual

Step 845

Server or provide redirect URL
to client?

Spillover l

s client persistent /sticky
to first or a second virtual

Go To Step 810 to perform
bandwidth threshold
management for the second
virtual server

erver?

A

establish second virtual server and/or
request handled by the second

Virtual server

Fig. 8B

A

1st

Step 855

U.S. Patent Aug. 4, 2015 Sheet 21 of 29 US 9,098,335 B2

Client Agent
120b
) Client Agent
Client Agent
Client 102b 120n
120a -
] Client 102n
Client 102a
Network /
104
URL redirect
660
Connection manager 610
/ Dynamic spillover ~*._
Py
bandwidth threshold 820A Monitoring bandwidth threshold 8208
measured bandwidth 825A agents .4.'_2.9.A.'_N_ measured bandwidth 8258
I Bandwidth detector 802 |
[Policy engine 938 |
‘I_ l vServer 2753’ l
1st object type 802a {
/l vServer 275a l vServer 275n’ I
3
o
£ vServer 275a”
£ \{ vServer 275n % l [
I 2nd object type 902n
— l vServer 275n” l
Appliance200
Service 270A Service 270A’
Server 106a Server 1062’
Service 270B Service 270B’

Server 106n / K

Server 106n’

U.S. Patent

Aug. 4, 2015

Sheet 22 of 29 US 9,098,335 B2

Establishing a first vServer on the appliance
to direct request to other virtual servers based

Step 905

on object types
v

the second v3erver (or object handling vservers|

Establishing a bandwidth threshold of
Step 910

Monitoring the status of the services

Step 915

managed by the first vServer

monitoring the bandwidth used by the

Second vServer (or object handling vservers) Step 920

Receiving a client request,
such as a transport layer
connection request

Determining whether © No

Step 925

Redirect URL to client

not the bandwidth
threshold is reached/ or
exceeded ?

v Step 935

Yes Request handled by the

second virtual server

) Establish spillover virtual Tesg. Iy

3rd yserver) or provide redirect

Step 945 URL to client?
Spillover l
Step 980
2nd

s client persistent /sticky

To the second virtual server?
Go To Step 910 to perform
bandwidth threshold
management for the second B)
virtual server 3 or spillover vserver

X
establish second third server and/or
request handled by the third Step 955
Virtual server

Fig. 9B

U.S. Patent Aug. 4, 2015 Sheet 23 of 29 US 9,098,335 B2

Client 102a \

Client Agent
120b
- Client Agent
Client Agent
Client 102b 120n
120a A

/ Client 102n

URL redirect
660

Network

<

Connection manager 610

health threshold 1020A

/ Dynamic spillover . _
A

Monitoring health threshold 10208

measured health 1025A

agents 420A-N

measured health 10258

| health monitor 1002

vServer 275a vServer 276n

service 270A - weight service group 270A" -
107(.)A] weight 1070A

service 270N - weight service 270N - weight
1070N

1070N’

Appliance200

Service 270A

Server 106a

Service 270B

Server 106b

Service 270N

Server 106n

Service 270A’

Server 1062’

Service 270B’

Server 106b’

Service 270N’

Server 106n,

Fig. 104

Establishing a first vServer on the appliance Ste

A

Establishing a bandwidth threshold of
the first vServer Ste

y
Monitoring the status of the services

Receivi lient t,
eceiving a client reques Step 1030

Determining whether ©

No

not the health has
reached or fallen below
the health threshold ?

Step 1025

U.S. Patent Aug. 4, 2015 Sheet 24 of 29 US 9,098,335 B2

p 1005

p 1010

managed by the first vServer, each service Step 1015
assigned a weight
determining and monitoring the health of the
first vServer: Health of a vServer =
Step 1020
[(activeWeight of vServer) / totalWeight of vServer) 1* 100

Step 1035

First

Redirect URL to client

Request handled by the

virtual server

? Establish second virtual X
Server or provide redirect URL
Step 1045 to client?
Spillover l
s client persistent /sticky
to first or a second virtual A
Go To Step 510 to perform erver?
health threshold
management for the second
virtual server
A
establish second virtual server and/or
request handled by the second Step 1055
Virtual server

Fig. 10B

U.S. Patent Aug. 4, 2015 Sheet 25 of 29 US 9,098,335 B2

545

Memory Bus 556
Core1 Core2 Core3 Core4 Coreb Core6 Core7 Core N
548A 5488 548C 548D 548E 548F 548G 548N
Packet Packet Packet Packet Packet Packet Packet Packet
Engine Engine Engine Engine Engine Engine Engine Engine
B c D E F G N
UL U LR L R L e
F!ow] l Flow ' FlowI l Flow Flow | FIowl l Flow l Flow
Dist Dist I Dist. Dist l Dist ' Dist Dist | Dist. I
| 550 | [#s50 | [550 | | 550) [0s50]](]5 | 550 | | 550 |
505A 5058 508C 505D 505E 505F 505G
RSS Moduleb60 Flow Distributor
¢ 552
' 550' l 560
Fliow | NIC RSS Module
| Distributorl

FIG. 11

U.S. Patent Aug. 4, 2015 Sheet 26 of 29 US 9,098,335 B2

1201
_ identify a limit for a number of uses of a resource
across a plurality of PPEs
1203 v
. establish an exclusive quota pool for the resource
based on the limit
1205 \ 4
\ establish a shared quota pool for the resource
based on the limit
1207 \ 4
\ establish a batch number of uses to be provided from
the shared quota pool
1209 Y
___| allocate an exclusive number of uses from the exclusive quota
pool to a PPE operating on a core

FIG. 124

U.S. Patent Aug. 4, 2015 Sheet 27 of 29 US 9,098,335 B2

1211

N receive a request to use a resource
1213 .

\ determine if PPE will exceed number of exclusive uses

by fulfilling the request
N Y
h 4 4

1215 fulfill the request request a batch number of 21

N to use the resource S~ uses from the shared quota

pool

A 4

select a spillover PPE if no _/1218

uses are left in the shared
quota pool

A 4

fulfil the request to use the | v

resource via the spillover
PPE

FIG. 12B

U.S. Patent Aug. 4, 2015 Sheet 28 of 29 US 9,098,335 B2

1221
N detect that use of a resource has been completed
1223
A determine if the PPE borrowed from the shared quota pool
N Y
A A
L 1227
1225 complete the use of the N | determine if the number of -
N resource completed uses >= batch
x number
Y
A 4
return a batch number of 1229
uses to the shared quota -/
pool

FIG. 12C

U.S. Patent Aug. 4, 2015 Sheet 29 of 29 US 9,098,335 B2

1291
| Identifying a spillover limit for a multi-core device operating

A plurality of virtual servers on corresponding cores

1293

N Allocating by a pool manager to each core/packet engine/virtual
server resource uses from exclusive and shared quota pools
based on the spillover limit

l

__| Determining by the device that a virtual server had exhausted its
allocated resource usages for spillover limit resource

1297 l

__| Forwarding by the device, responsive to the determination, a client
request to a backup virtual server

12979 l

N Monitoring by a master core the service and changing spillover
limits and allocations

1295

FIG. 12D

US 9,098,335 B2

1
SYSTEMS AND METHODS FOR MANAGING
SPILLOVER LIMITS IN A MULTI-CORE
SYSTEM

RELATED APPLICATION

The present application claims the benefit of and priority to
U.S. Provisional Application No. 61/289,536, entitled “Sys-
tems and Methods For Managing Spillover Limits In A Multi-
Core System” and filed on Dec. 23, 2009, which is incorpo-
rated herein by reference in its entirety.

FIELD OF THE INVENTION

The present application generally relates to data commu-
nication networks. In particular, the present application
relates to systems and methods for handling spillover in con-
junction with limit parameters across cores in a multi-core
system.

BACKGROUND OF THE INVENTION

As any resource possesses finite capacity, use of a resource
over a network will be subject to inherent or imposed limits.
In a single processor system, the processor may field all of
these requests to use a resource. The processor may process
multiple uses of the resource in parallel according to the
processor’s own capacity. In a multi-core system, requests to
use the resource may be handled by different cores at different
times. Each of the cores may be running at different capacity.
It is challenging to manage the use of the resource across the
different cores.

BRIEF SUMMARY OF THE INVENTION

The present application is directed towards handling limit
parameters for spillover conditions of virtual servers across
multiple cores in a multi-core system. In general overview, a
limit parameter for a resource may indicate the maximum
number of uses for the resource. A pool manager may manage
this number of uses for the resource. The pool manager may
determine an exclusive quota pool and a shared quota pool
from the limit. The pool manager may allocate to each packet
processing engine operating on a core of the multi-core sys-
tem an exclusive number of uses from the exclusive quota
pool. Each packet processing engine may use the resource up
to the exclusive number of uses, without further restrictions.
If a packet processing engine wishes to use the resource
beyond its exclusive number, the packet processing engine
may borrow uses from the shared quota pool. When the
packet processing engine completes uses of the resource, the
packet processing engine may return uses to the shared quota
pool. However, if the packet processing engine may not bor-
row uses from the shared quota pool, the engine may spillover
into another engine that is not using all of its exclusive uses.

In some aspects, the present disclosure is related to a
method of managing spillover via a plurality of cores of a
multi-core device intermediary to a plurality of clients and
one or more services. The method includes identifying, for a
device intermediary to a plurality of clients and one or more
services, a spillover limit of a resource. The device may
includes a plurality of virtual servers operating on a corre-
sponding core of a plurality of cores of the device. The
method further includes allocating, by a pool manager of the
device, to each of the plurality of virtual servers, a number of
resource uses from an exclusive quota pool and shared quota
pool based on the spillover limit The device may determine

20

35

40

45

55

2

that the number of resources used by a virtual server of the
plurality of virtual servers has reached the allocated number
of resource uses of the virtual server, and responsive to the
determination, forwarding o a backup virtual server a request
of'a client of the plurality of clients received by the device for
the virtual server.

In some embodiments, the method includes identifying for
the device the spillover limit as a maximum number of con-
nections to a service of the one or more services. In the
embodiments, the method includes identifying for the device
the spillover limit as a dynamic connection threshold, the
dynamic connection threshold determined from a sum of a
connection capacity of each of the plurality of virtual servers.
In some embodiments, the method includes identifying for
the device the spillover limit as a bandwidth threshold.

In some embodiments, the method includes allocating, by
the pool manager, the number of resource uses comprising a
number of exclusive uses from the exclusive quota pool and a
number of non-exclusive uses from the shared quota pool. In
some embodiments, the method includes requesting, by the
virtual server, a resource use from the pool manager upon
reaching the virtual server’s allocation of resource uses. In
some embodiments, the method includes determining, by the
device, that the number of resource uses available from the
pool manager for the virtual server has been exhausted. In
some embodiments, the method includes changing the spill-
over limit to a lower number of resource uses and responsive
to the change the one or more of the plurality of virtual servers
returning a portion of the allocated number of resource uses to
the pool manager. In some embodiments, the method includes
changing the spillover limit to a higher number of resource
uses and responsive to the change, one or more the plurality of
virtual servers requesting from the pool manager an addi-
tional the number of resource uses. In some embodiments, the
method includes designating a first core of the plurality of
cores as spillover master for monitoring the service and
changing the spillover limit based on monitoring.

In some aspects, the present disclosure is directed to a
system for managing spillover via a plurality of cores of a
multi-core device intermediary to a plurality of clients and
one or more services. The system may include a device inter-
mediary to a plurality of clients and one or more services. The
system may include a spillover limit of a resource. The device
may also include a plurality of packet engines operating on a
corresponding core of a plurality of cores of the device. The
system may include a pool manager allocating to each of the
plurality of packet engines a number of resource uses from an
exclusive quota pool and shared quota pool based on the
spillover limit. The device may also include a virtual server of
apacket engine of the plurality of packet engines. The virtual
server manages client requests to one or more services. The
device determines that the number of resources used by a
packet engine of the plurality of packet engine has reached the
allocated number of resource uses of the packet engine, and
responsive to the determination, forwards to a backup virtual
server a request of a client of the plurality of clients received
by the device for the virtual server.

In some embodiments, the device identifies the spillover
limit as a maximum number of connections to a service of the
one or more services. In some embodiments, the device iden-
tifies the spillover limit as a dynamic connection threshold,
the dynamic connection threshold determined from a sum of
a connection capacity of each of the plurality of virtual serv-
ers. In some embodiments, the device identifies the spillover
limit as a bandwidth threshold.

In some embodiments, the pool manager allocates the
number of resource uses comprising a number of exclusive

US 9,098,335 B2

3

uses from the exclusive quota pool and a number of non-
exclusive uses from the shared quota pool. In some embodi-
ments, the packet engine requests a resource use from the
pool manager upon reaching the packet engine’s allocation of
resource uses. In some embodiments, the device determines
that the number of resource uses available from the pool
manager has been exhausted. In some embodiments, the
device changes the spillover limit to a lower number of
resource uses and responsive to the change, one or more of the
plurality of packet engines returning a portion of the allocated
number of resource uses to the pool manager. In some
embodiments, the device changes the spillover limit to a
higher number of resource uses and responsive to the change,
one or more the plurality of packet engines requesting from
the pool manager an additional the number of resource uses.
In some embodiments, the device designates a first packet
engine of the plurality of packet engines as spillover master
for monitoring the service and changing the spillover limit
based on monitoring.

The details of various embodiments of the invention are set
forth in the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a network
environment for a client to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an envi-
ronment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1D is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIGS. 1E-1H are block diagrams of embodiments of a
computing device;

FIG. 2A is a block diagram of an embodiment of an appli-
ance for processing communications between a client and a
server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4A is a block diagram of an embodiment of a virtu-
alization environment;

FIG. 4B is a block diagram of another embodiment of a
virtualization environment;

FIG. 4C is a block diagram of an embodiment of a virtu-
alized appliance;

FIG. 5A are block diagrams of embodiments of approaches
to implementing parallelism in a multi-core system;

FIG. 5B is a block diagram of an embodiment of a system
utilizing a multi-core system;

FIG. 5C is a block diagram of another embodiment of an
aspect of a multi-core system;

FIG. 6 is an embodiment of an appliance for providing a
technique of dynamic connection threshold management;

20

25

40

45

55

65

4

FIG. 7 is a flow diagram of steps of an embodiment of a
method for practicing a technique of dynamic connection
threshold management in conjunction with the system of F1G.
6,

FIG. 8A is an embodiment of an appliance for providing a
technique of virtual server spillover management based on
bandwidth;

FIG. 8B is a flow diagram of steps of an embodiment of a
method for practicing a technique of spillover management
based on bandwidth in conjunction with the system of FIG.
8A;

FIG. 9A is another embodiment of an appliance for pro-
viding a technique of virtual server spillover management
based on bandwidth and objects;

FIG. 9B is a flow diagram of steps of an embodiment of a
method for practicing a technique of spillover management
based on bandwidth and objects in conjunction with the sys-
tem of FIG. 9A;

FIG. 10A is an embodiment of an appliance for providing
a technique of virtual server spillover management based on
health;

FIG. 10B is a flow diagram of steps of an embodiment of a
method for practicing a technique of spillover management
based on health in conjunction with the system of FIG. 5A;

FIG. 11 is a block diagram of an embodiment of a multi-
core system for handling limit parameters for one or more
resources;

FIG. 12A is a flow diagram depicting steps of an embodi-
ment of a method for allocating numbers of uses of resources
to a plurality of packet processing engines operating on a
plurality of cores in a multi-core system;

FIG. 12B is a flow diagram depicting steps of an embodi-
ment of a method for borrowing from a shared quota pool and
spilling over into another packet processing engine when
such borrow is not possible; and

FIG. 12C is a flow diagram depicting steps of an embodi-
ment of a method for returning quota to a shared quota pool;
and

FIG. 12D is a flow diagram depicts steps of an embodi-
ments of method of practicing spillover limits in a multi-core
device using embodiments of pool management techniques.

The features and advantages of the present invention will
become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate identical, functionally similar, and/or structur-
ally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

For purposes of reading the description of the various
embodiments below, the following descriptions of the sec-
tions of the specification and their respective contents may be
helpful:

Section A describes a network environment and computing
environment which may be useful for practicing
embodiments described herein;

Section B describes embodiments of systems and methods
for delivering a computing environment to a remote
user;

Section C describes embodiments of systems and methods
for accelerating communications between a client and a
server;

Section D describes embodiments of systems and methods
for virtualizing an application delivery controller;

US 9,098,335 B2

5

Section E describes embodiments of systems and methods
for providing a multi-core architecture and environment;

Section E describes embodiments of systems and methods
for dynamic connection spillover among virtual servers;

Section F describes embodiments of systems and methods
for dynamic spillover of virtual servers based on band-
width;

Section G describes embodiments of systems and methods

for health based spillover among virtual servers; and

Section H describes embodiments of systems and methods

for handling spillover in conjunction with limit param-
eters for multi-core systems.
A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now
to FIG. 1A, an embodiment of a network environment is
depicted. In brief overview, the network environment com-
prises one or more clients 102a-1027 (also generally referred
to as local machine(s) 102, or client(s) 102) in communica-
tion with one or more servers 106a-1067 (also generally
referred to as server(s) 106, or remote machine(s) 106) via
one or more networks 104, 104' (generally referred to as
network 104). In some embodiments, a client 102 communi-
cates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104'
between the clients 102 and the servers 106, the clients 102
and the servers 106 may be on the same network 104. The
networks 104 and 104' can be the same type of network or
different types of networks. The network 104 and/or the net-
work 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104' a public network. In another embodiment, net-
works 104 and 104' may both be private networks. In some
embodiments, clients 102 may be located at a branch office of
a corporate enterprise communicating via a WAN connection
over the network 104 to the servers 106 located at a corporate
data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local
area network, a telecommunications network, a data commu-
nication network, a computer network, an ATM (Asynchro-
nous Transfer Mode) network, a SONET (Synchronous Opti-
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net-
work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 and/or 104' may be a bus,
star, or ring network topology. The network 104 and/or 104'
and network topology may be of any such network or network
topology as known to those ordinarily skilled in the art
capable of supporting the operations described herein.

As shownin FIG. 1A, the appliance 200, which also may be
referred to as an interface unit 200 or gateway 200, is shown
between the networks 104 and 104'. In some embodiments,
the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104'. For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances

10

15

20

25

30

35

40

45

50

55

60

65

6

200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104'. In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106
on the same or different network 104, 104' as the client 102.
One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.

In some embodiments, the appliance 200 comprises any of
the network devices manufactured by Citrix Systems, Inc. of
Ft. Lauderdale Fla., referred to as Citrix NetScaler devices. In
other embodiments, the appliance 200 includes any of the
product embodiments referred to as WebAccelerator and
BigIP manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
DX acceleration device platforms and/or the SSI. VPN series
of devices, such as SA 700, SA 2000, SA 4000, and SA 6000
devices manufactured by Juniper Networks, Inc. of Sunny-
vale, Calif. In yet another embodiment, the appliance 200
includes any application acceleration and/or security related
appliances and/or software manufactured by Cisco Systems,
Inc. of San Jose, Calif., such as the Cisco ACE Application
Control Engine Module service software and network mod-
ules, and Cisco AVS Series Application Velocity System.

In one embodiment, the system may include multiple, logi-
cally-grouped servers 106. In these embodiments, the logical
group of servers may be referred to as a server farm 38. In
some of these embodiments, the serves 106 may be geo-
graphically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In one
embodiment, the server farm executes one or more applica-
tions on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous.
One or more of the servers 106 can operate according to one
type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Wash.), while
one or more of the other servers 106 can operate on according
to another type of operating system platform (e.g., Unix or
Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 in the same farm
38. Thus, the group of servers 106 logically grouped as a farm
38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For
example, a farm 38 may include servers 106 physically
located in different continents or different regions of a conti-
nent, country, state, city, campus, or room. Data transmission
speeds between servers 106 in the farm 38 can be increased if
the servers 106 are connected using a local-area network
(LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to function
as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communicates
directly with one of the servers 106 in a farm 38. In another
embodiment, the client 102 executes a program neighbor-
hood application to communicate with a server 106 in a farm

US 9,098,335 B2

7

38. In still another embodiment, the server 106 provides the
functionality of a master node. In some embodiments, the
client 102 communicates with the server 106 in the farm 38
through a network 104. Over the network 104, the client 102
can, for example, request execution of various applications
hosted by the servers 106a-106# in the farm 38 and receive
output of the results of the application execution for display.
In some embodiments, only the master node provides the
functionality required to identify and provide address infor-
mation associated with a server 106' hosting a requested
application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests to
a second server 1065 and responds to the request by the client
102 with a response to the request from the server 1065. In
still another embodiment, the server 106 acquires an enu-
meration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
such as display data, generated by an execution of the iden-
tified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104'. For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200" at a data
center. In another embodiment, the first appliance 200 and
second appliance 200" are deployed on the same network 104
or network 104. For example, a first appliance 200 may be
deployed for a first server farm 38, and a second appliance
200 may be deployed for a second server farm 38'. In another
example, a first appliance 200 may be deployed at a first
branch office while the second appliance 200" is deployed at a
second branch office’. In some embodiments, the first appli-
ance 200 and second appliance 200" work in cooperation or in
conjunction with each other to accelerate network traffic or
the delivery of application and data between a client and a
server

Referring now to FIG. 1C, another embodiment of a net-
work environment deploying the appliance 200 with one or
more other types of appliances, such as between one or more
WAN optimization appliance 205, 205' is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and s second WAN optimi-
zation appliance 205' may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi-
zation appliance 205' at a data center. In some embodiments,
the appliance 205 may be located on network 104'. In other
embodiments, the appliance 205' may be located on network
104. In some embodiments, the appliance 205'may be located
on network 104' or network 104". In one embodiment, the
appliance 205 and 205' are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization
appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38'

10

15

20

25

30

35

40

45

50

55

60

65

8

In one embodiment, the appliance 205 is a device for accel-
erating, optimizing or otherwise improving the performance,
operation, or quality of service of any type and form of
network traffic, such as traffic to and/or from a WAN connec-
tion. In some embodiments, the appliance 205 is a perfor-
mance enhancing proxy. In other embodiments, the appliance
205 is any type and form of WAN optimization or acceleration
device, sometimes also referred to as a WAN optimization
controller. In one embodiment, the appliance 205 is any ofthe
product embodiments referred to as WANScaler manufac-
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. In other
embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-1P link controller and WAN-
jet manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
WX and WXC WAN acceleration device platforms manufac-
tured by Juniper Networks, Inc. of Sunnyvale, Calif. In some
embodiments, the appliance 205 includes any of the steclhead
line of WAN optimization appliances manufactured by River-
bed Technology of San Francisco, Calif. In other embodi-
ments, the appliance 205 includes any of the WAN related
devices manufactured by Expand Networks Inc. of Roseland,
N.J. In one embodiment, the appliance 205 includes any of
the WAN related appliances manufactured by Packeteer Inc.
of Cupertino, Calif., such as the PacketShaper, iShared, and
SkyX product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide Area
Network Application Services software and network mod-
ules, and Wide Area Network engine appliances.

Inone embodiment, the appliance 205 provides application
and data acceleration services for branch-office or remote
offices. In one embodiment, the appliance 205 includes opti-
mization of Wide Area File Services (WAFS). In another
embodiment, the appliance 205 accelerates the delivery of
files, such as via the Common Internet File System (CIFS)
protocol. In other embodiments, the appliance 205 provides
caching in memory and/or storage to accelerate delivery of
applications and data. In one embodiment, the appliance 205
provides compression of network traffic at any level of the
network stack or at any protocol or network layer. In another
embodiment, the appliance 205 provides transport layer pro-
tocol optimizations, flow control, performance enhancements
or modifications and/or management to accelerate delivery of
applications and data over a WAN connection. For example,
in one embodiment, the appliance 205 provides Transport
Control Protocol (TCP) optimizations. In other embodi-
ments, the appliance 205 provides optimizations, flow con-
trol, performance enhancements or modifications and/or
management for any session or application layer protocol.

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network packet
to announce presence, functionality or capability to another
appliance 205'. In another embodiment, an appliance 205'
may communicate with another appliance 205" using data
encoded in both TCP and/or IP header fields or options. For
example, the appliance may use TCP option(s) or IP header
fields or options to communicate one or more parameters to
be used by the appliances 205, 205' in performing function-
ality, such as WAN acceleration, or for working in conjunc-
tion with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a trans-

US 9,098,335 B2

9

port layer connection traversing the appliance 200, such as a
transport layer connection from between a client and a server
traversing appliances 205 and 205'. In one embodiment, the
appliance 200 identifies and preserves any encoded informa-
tion in a transport layer packet transmitted by a first appliance
205 via a first transport layer connection and communicates a
transport layer packet with the encoded information to a
second appliance 205' via a second transport layer connec-
tion.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ-
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates deliv-
ery of a computing environment 15, or any portion thereof, to
a client 102. In one embodiment, the appliance 200 acceler-
ates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodi-
ments described herein may be used to accelerate delivery of
a streaming application and data file processable by the appli-
cation from a central corporate data center to a remote user
location, such as a branch office of the company. In another
embodiment, the appliance 200 accelerates transport layer
traffic between a client 102 and a server 106. The appliance
200 may provide acceleration techniques for accelerating any
transport layer payload from a server 106 to a client 102, such
as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buft-
ering, 4) compression and 5) caching. In some embodiments,
the appliance 200 provides load balancing of servers 106 in
responding to requests from clients 102. In other embodi-
ments, the appliance 200 acts as a proxy or access server to
provide access to the one or more servers 106. In another
embodiment, the appliance 200 provides a secure virtual pri-
vate network connection from a first network 104 of the client
102 to the second network 104' of the server 106, such as an
SSL VPN connection. It yet other embodiments, the appli-
ance 200 provides application firewall security, control and
management of the connection and communications between
a client 102 and a server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution meth-
ods and based on any authentication and authorization poli-
cies applied via a policy engine 195. With these techniques, a
remote user may obtain a computing environment and access
to server stored applications and data files from any network
connected device 100. In one embodiment, the application
delivery system 190 may reside or execute on a server 106. In
another embodiment, the application delivery system 190
may reside or execute on a plurality of servers 106a-106#. In
some embodiments, the application delivery system 190 may
execute in a server farm 38. In one embodiment, the server
106 executing the application delivery system 190 may also

10

15

20

25

30

35

40

45

50

55

60

65

10

store or provide the application and data file. In another
embodiment, a first set of one or more servers 106 may
execute the application delivery system 190, and a different
server 106. may store or provide the application and data file.
In some embodiments, each of the application delivery sys-
tem 190, the application, and data file may reside or be located
on different servers. In yet another embodiment, any portion
of'the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality
of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200 may
request an application and data file from the server 106. Inone
embodiment, the appliance 200 may forward a request from
the client 102 to the server 106. For example, the client 102
may not have the application and data file stored or accessible
locally. In response to the request, the application delivery
system 190 and/or server 106 may deliver the application and
data file to the client 102. For example, in one embodiment,
the server 106 may transmit the application as an application
stream to operate in computing environment 15 on client 102.

In some embodiments, the application delivery system 190
comprises any portion of the Citrix Access Suite™ by Citrix
Systems, Inc., such as the MetaFrame or Citrix Presentation
Server™ and/or any of the Microsoft® Windows Terminal
Services manufactured by the Microsoft Corporation. In one
embodiment, the application delivery system 190 may deliver
one or more applications to clients 102 or users via a remote-
display protocol or otherwise via remote-based or server-
based computing. In another embodiment, the application
delivery system 190 may deliver one or more applications to
clients or users via steaming of the application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing the
access 1o, selection of application execution methods and the
delivery of applications. In some embodiments, the policy
engine 195 determines the one or more applications a user or
client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be deliv-
ered to the user or client 102, e.g., the method of execution. In
some embodiments, the application delivery system 190 pro-
vides a plurality of delivery techniques from which to select a
method of application execution, such as a server-based com-
puting, streaming or delivering the application locally to the
client 120 for local execution.

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi-
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut-
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after

US 9,098,335 B2

11
retrieving a plurality of application files comprising the appli-
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica-
tion to stream the application via the network 104 to the client
102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf ofthe client 102
on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica-
tion related to real-time data communications, such as appli-
cations for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an appli-
cation providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106
or server farm 38 executes as an application, any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server™, and/or any of the
Microsoft® Windows Terminal Services manufactured by
the Microsoft Corporation. In one embodiment, the applica-
tion is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar-
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeeting™ provided by
Citrix Online Division, Inc. of Santa Barbara, Calif.,
WebEx™ provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor-
poration of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106 A may include any type and form per-
formance monitoring service 198. The performance monitor-
ing service 198 may include monitoring, measurement and/or
management software and/or hardware, including data col-
lection, aggregation, analysis, management and reporting. In
one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of script,
such as Visual Basic script, or Javascript. In one embodiment,

40

45

12

the monitoring agent 197 executes transparently to any appli-
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the
monitoring agent 197 is installed and operated without any
instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors,
measures and collects data on a predetermined frequency. In
other embodiments, the monitoring agent 197 monitors, mea-
sures and collects data based upon detection of any type and
form of event. For example, the monitoring agent 197 may
collect data upon detection of a request for a web page or
receipt of an HTTP response. In another example, the moni-
toring agent 197 may collect data upon detection of any user
input events, such as a mouse click. The monitoring agent 197
may report or provide any monitored, measured or collected
data to the monitoring service 198. In one embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or a predetermined fre-
quency. In another embodiment, the monitoring agent 197
transmits information to the monitoring service 198 upon
detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc-
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi-
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP con-
nection. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures network
latency. In yet one embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures band-
width utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring ser-
vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor-
ing and performance measurement of any session or connec-
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea-
sures performance of a browser. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor-
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni-
toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv-
ery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the

US 9,098,335 B2

13

monitoring service 198 and/or monitoring agent 197 moni-
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as appli-
ance 200 and/or appliance 205. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of delivery of a virtualized
application. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu-
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service 198
and/or monitoring agent 197 may monitor, measure and man-
age the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring
service 198 and/or monitoring agent 197 monitors individual
ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system
resource usage, as well as application and networking perfor-
mance. The monitoring service 198 and/or monitoring agent
197 may identity the active servers for a given user and/or
user session. In some embodiments, the monitoring service
198 and/or monitoring agent 197 monitors back-end connec-
tions between the application delivery system 190 and an
application and/or database server. The monitoring service
198 and/or monitoring agent 197 may measure network
latency, delay and volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total memory
usage, per user session and/or per process. In other embodi-
ments, the monitoring service 198 and/or monitoring agent
197 measures and monitors CPU usage the application deliv-
ery system 190, such as total CPU usage, per user session
and/or per process. In another embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-
tors the time required to log-in to an application, a server, or
the application delivery system, such as Citrix Presentation
Server. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 measures and monitors the duration
auser is logged into an application, a server, or the application
delivery system 190. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-
tors active and inactive session counts for an application,
server or application delivery system session. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea-
sures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to system
memory, CPU usage, and disk storage. In another embodi-

20

25

35

40

45

50

55

14

ment, the monitoring service 198 and/or monitoring agent
197 measures and monitors metrics related to page faults,
such as page faults per second. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 mea-
sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica-
tion crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi-
ments referred to as EdgeSight manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. In another embodiment, the
performance monitoring service 198 and/or monitoring agent
198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by the
Symphoniq Corporation of Palo Alto, Calif. In one embodi-
ment, the performance monitoring service 198 and/or moni-
toring agent 198 includes any portion of the product embodi-
ments referred to as the Tealeaf CX product suite
manufactured by the Teal.eaf Technology Inc. of San Fran-
cisco, Calif. In other embodiments, the performance moni-
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such as
the BMC Performance Manager and Patrol products, manu-
factured by BMC Software, Inc. of Houston, Tex.

The client 102, server 106, and appliance 200 may be
deployed as and/or executed on any type and form of com-
puting device, such as a computer, network device or appli-
ance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102,
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi-
tional optional elements, such as one or more input/output
devices 130a-1306 (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process-
ing unit is provided by a microprocessor unit, such as: those
manufactured by Intel Corporation of Mountain View, Calif’;
those manufactured by Motorola Corporation of Schaum-
burg, Il1.; those manufactured by Transmeta Corporation of
Santa Clara, Calif.; the RS/6000 processor, those manufac-
tured by International Business Machines of White Plains,
N.Y.; or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 100 may be based on
any of these processors, or any other processor capable of
operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
bedirectly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch-
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC 100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink

US 9,098,335 B2

15

DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 122 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In the embodiment shown in FIG. 1E, the
processor 101 communicates with main memory 122 via a
system bus 150 (described in more detail below). FIG. 1E
depicts an embodiment of a computing device 100 in which
the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1F the main
memory 122 may be DRDRAM.

FIG. 1F depicts an embodiment in which the main proces-
sor 101 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 101 communicates
with cache memory 140 using the system bus 150. Cache
memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or
EDRAM. In the embodiment shown in FIG. 1E, the processor
101 communicates with various I/O devices 130 via a local
system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the 1/O devices 130,
including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the /O device is a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1F depicts an embodiment of a
computer 100 in which the main processor 101 communi-
cates directly with [/O device 130 via HyperTransport, Rapid
1/0, or InfiniBand. FIG. 1F also depicts an embodiment in
which local busses and direct communication are mixed: the
processor 101 communicates with I/O device 130 using a
local interconnect bus while communicating with I/O device
130 directly.

The computing device 100 may support any suitable instal-
lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device suitable for installing software and programs
such as any client agent 120, or portion thereof. The comput-
ing device 100 may further comprise a storage device 128,
such as one or more hard disk drives or redundant arrays of
independent disks, for storing an operating system and other
related software, and for storing application software pro-
grams such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIX®, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri-
bution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein. A wide variety of 1/O devices

10

15

20

25

30

35

40

45

50

55

60

65

16

130a-1307 may be present in the computing device 100. Input
devices include keyboards, mice, trackpads, trackballs,
microphones, and drawing tablets. Output devices include
video displays, speakers, inkjet printers, laser printers, and
dye-sublimation printers. The 1/O devices 130 may be con-
trolled by an I/O controller 123 as shown in FIG. 1E. The I/O
controller may control one or more /O devices such as a
keyboard 126 and a pointing device 127, e.g., a mouse or
optical pen. Furthermore, an /O device may also provide
storage 128 and/or an installation medium 116 for the com-
puting device 100. In still other embodiments, the computing
device 100 may provide USB connections to receive hand-
held USB storage devices such as the USB Flash Drive line of
devices manufactured by Twintech Industry, Inc. of Los
Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
124n, which each may be of the same or different type and/or
form. As such, any of the I/O devices 130a-130% and/or the
1/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and
use of multiple display devices 124a-124z by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124#. In one embodi-
ment, a video adapter may comprise multiple connectors to
interface to multiple display devices 124a-124n. In other
embodiments, the computing device 100 may include mul-
tiple video adapters, with each video adapter connected to one
or more of the display devices 124a-124#. In some embodi-
ments, any portion of the operating system of the computing
device 100 may be configured for using multiple displays
124a-124n. In other embodiments, one or more of the display
devices 124a-124n may be provided by one or more other
computing devices, such as computing devices 100a and
1005 connected to the computing device 100, for example,
via a network. These embodiments may include any type of
software designed and constructed to use another computer’s
display device as a second display device 124a for the com-
puting device 100. One ordinarily skilled in the art will rec-
ognize and appreciate the various ways and embodiments that
a computing device 100 may be configured to have multiple
display devices 124a-124n.

In further embodiments, an I/0 device 130 may be a bridge
170 between the system bus 150 and an external communi-
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Giga-
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.

A computing device 100 of the sort depicted in FIGS. 1E
and 1F typically operate under the control of operating sys-
tems, which control scheduling of tasks and access to system
resources. The computing device 100 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases ofthe Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any real-time operating system, any open
source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi-

US 9,098,335 B2

17
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely-
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating system, among others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart
phone manufactured by Palm, Inc. In this embodiment, the
Treo smart phone is operated under the control of the PalmOS
operating system and includes a stylus input device as well as
a five-way navigator device. Moreover, the computing device
100 can be any workstation, desktop computer, laptop or
notebook computer, server, handheld computer, mobile tele-
phone, any other computer, or other form of computing or
telecommunications device that is capable of communication
and that has sufficient processor power and memory capacity
to perform the operations described herein.

As shown in FIG. 1G, the computing device 100 may
comprise multiple processors and may provide functionality
for simultaneous execution of instructions or for simulta-
neous execution of one instruction on more than one piece of
data. In some embodiments, the computing device 100 may
comprise a parallel processor with one or more cores. In one
of these embodiments, the computing device 100 is a shared
memory parallel device, with multiple processors and/or mul-
tiple processor cores, accessing all available memory as a
single global address space. In another of these embodiments,
the computing device 100 is a distributed memory parallel
device with multiple processors each accessing local memory
only. In still another of these embodiments, the computing
device 100 has both some memory which is shared and some
memory which can only be accessed by particular processors
or subsets of processors. In still even another of these embodi-
ments, the computing device 100, such as a multi-core micro-
processor, combines two or more independent processors into
a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100
includes a chip having a CELL. BROADBAND ENGINE
architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power pro-
cessor element and the plurality of synergistic processing
elements linked together by an internal high speed bus, which
may be referred to as an element interconnect bus.

In some embodiments, the processors provide functional-
ity for execution of a single instruction simultaneously on
multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple
instructions simultaneously on multiple pieces of data
(MIMD). In still other embodiments, the processor may use
any combination of SIMD and MIMD cores in a single
device.

In some embodiments, the computing device 100 may
comprise a graphics processing unit. In one of these embodi-
ments, depicted in FIG. 1H, the computing device 100
includes at least one central processing unit 101 and at least
one graphics processing unit. In another of these embodi-
ments, the computing device 100 includes at least one parallel
processing unit and at least one graphics processing unit. In
still another of these embodiments, the computing device 100

5

10

15

20

25

30

35

40

45

50

55

60

65

18

includes a plurality of processing units of any type, one of the
plurality of processing units comprising a graphics process-
ing unit.

In some embodiments, a first computing device 100a
executes an application on behalf of a user of a client com-
puting device 1005. In other embodiments, a computing
device 100a executes a virtual machine, which provides an
execution session within which applications execute on
behalf of a user or a client computing devices 1005. In one of
these embodiments, the execution session is a hosted desktop
session. In another of these embodiments, the computing
device 100 executes a terminal services session. The terminal
services session may provide a hosted desktop environment.
In still another of these embodiments, the execution session
provides access to a computing environment, which may
comprise one or more of: an application, a plurality of appli-
cations, a desktop application, and a desktop session in which
one or more applications may execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli-
ance 200. The architecture of the appliance 200 in FIG. 2A is
provided by way of illustration only and is not intended to be
limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also pro-
vides the structures and elements which allow programs and
services within kernel space 204 and user space 202 to com-
municate data both internally and externally with respect to
appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing software pro-
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform-
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com-
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of'the processors 101 described above in connec-
tion with FIGS. 1E and 1F. For example, in one embodiment,
the appliance 200 comprises a first processor 262 and a sec-
ond processor 262'. In other embodiments, the processor 262
or 262' comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is gen-
erally illustrated with an encryption processor 260, processor
260 may be a processor for performing functions related to
any encryption protocol, such as the Secure Socket Layer
(SSL) or Transport Layer Security (TLS) protocol. In some
embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may have
executable instructions for performing processing of any
security related protocol.

Although the hardware layer 206 of appliance 200 is illus-
trated with certain elements in FIG. 2, the hardware portions
or components of appliance 200 may comprise any type and
form of elements, hardware or software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
some embodiments, the appliance 200 may comprise a server,
gateway, router, switch, bridge or other type of computing or
network device, and have any hardware and/or software ele-
ments associated therewith.

US 9,098,335 B2

19

The operating system of appliance 200 allocates, manages,
or otherwise segregates the available system memory into
kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or
form of Unix operating system although the invention is not
so limited. As such, the appliance 200 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any network operating system, any real-
time operating system, any open source operating system, any
proprietary operating system, any operating systems for
mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and
performing the operations described herein.

The kernel space 204 is reserved for running the kernel
230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and pro-
vides access, control, and management of resources and hard-
ware-related elements of the application 104. In accordance
with an embodiment of the appliance 200, the kernel space
204 also includes a number of network services or processes
working in conjunction with a cache manager 232, sometimes
also referred to as the integrated cache, the benefits of which
are described in detail further herein. Additionally, the
embodiment of the kernel 230 will depend on the embodi-
ment of the operating system installed, configured, or other-
wise used by the device 200.

In one embodiment, the device 200 comprises one network
stack 267, such as a TCP/IP based stack, for communicating
with the client 102 and/or the server 106. In one embodiment,
the network stack 267 is used to communicate with a first
network, such as network 108, and a second network 110. In
some embodiments, the device 200 terminates a first transport
layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server
106 for use by the client 102, e.g., the second transport layer
connection is terminated at the appliance 200 and the server
106. The first and second transport layer connections may be
established via a single network stack 267. In other embodi-
ments, the device 200 may comprise multiple network stacks,
for example 267 and 267", and the first transport layer con-
nection may be established or terminated at one network stack
267, and the second transport layer connection on the second
network stack 267'. For example, one network stack may be
for receiving and transmitting network packet on a first net-
work, and another network stack for receiving and transmit-
ting network packets on a second network. In one embodi-
ment, the network stack 267 comprises a buffer 243 for
queuing one or more network packets for transmission by the
appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache
manager 232, a high-speed layer 2-7 integrated packet engine
240, an encryption engine 234, apolicy engine 236 and multi-
protocol compression logic 238. Running these components
or processes 232, 240, 234, 236 and 238 in kernel space 204
or kernel mode instead of the user space 202 improves the
performance of each of these components, alone and in com-
bination. Kernel operation means that these components or
processes 232, 240, 234, 236 and 238 run in the core address
space of the operating system of the device 200. For example,
running the encryption engine 234 in kernel mode improves
encryption performance by moving encryption and decryp-
tion operations to the kernel, thereby reducing the number of
transitions between the memory space or a kernel thread in

20

30

35

40

45

50

20

kernel mode and the memory space or a thread in user mode.
For example, data obtained in kernel mode may not need to be
passed or copied to a process or thread running in user mode,
such as from a kernel level data structure to a user level data
structure. In another aspect, the number of context switches
between kernel mode and user mode are also reduced. Addi-
tionally, synchronization of and communications between
any of the components or processes 232, 240, 235, 236 and
238 can be performed more efficiently in the kernel space
204.

In some embodiments, any portion of the components 232,
240, 234, 236 and 238 may run or operate in the kernel space
204, while other portions of these components 232, 240, 234,
236 and 238 may run or operate in user space 202. In one
embodiment, the appliance 200 uses a kernel-level data struc-
ture providing access to any portion of one or more network
packets, for example, a network packet comprising a request
from a client 102 or a response from a server 106. In some
embodiments, the kernel-level data structure may be obtained
by the packet engine 240 via a transport layer driver interface
or filter to the network stack 267. The kernel-level data struc-
ture may comprise any interface and/or data accessible viathe
kernel space 204 related to the network stack 267, network
traffic or packets received or transmitted by the network stack
267. In other embodiments, the kernel-level data structure
may be used by any of the components or processes 232, 240,
234, 236 and 238 to perform the desired operation of the
component or process. In one embodiment, a component 232,
240, 234, 236 and 238 is running in kernel mode 204 when
using the kernel-level data structure, while in another
embodiment, the component 232, 240, 234, 236 and 238 is
running in user mode when using the kernel-level data struc-
ture. In some embodiments, the kernel-level data structure
may be copied or passed to a second kernel-level data struc-
ture, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware
or any combination of software and hardware to provide
cache access, control and management of any type and form
of content, such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in
which the original data may require longer access time to
fetch, compute or otherwise obtain relative to reading a cache
memory element. Once the data is stored in the cache memory
element, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data,
thereby reducing the access time. In some embodiments, the
cache memory element may comprise a data object in
memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having a faster
access time than memory 264. In another embodiment, the
cache memory element may comprise any type and form of
storage element of the device 200, such as a portion of a hard
disk. In some embodiments, the processing unit 262 may
provide cache memory for use by the cache manager 232. In
yet further embodiments, the cache manager 232 may use any
portion and combination of memory, storage, or the process-
ing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function-
ality to invalidate objects based on the expiration of an invali-

US 9,098,335 B2

21

dation time period or upon receipt of an invalidation com-
mand from a client 102 or server 106. In some embodiments,
the cache manager 232 may operate as a program, service,
process or task executing in the kernel space 204, and in other
embodiments, in the user space 202. In one embodiment, a
first portion of the cache manager 232 executes in the user
space 202 while a second portion executes in the kernel space
204. In some embodiments, the cache manager 232 can com-
prise any type of general purpose processor (GPP), or any
other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica-
tion(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow a user to identify, specify,
define or configure a caching policy. Policy engine 236, in
some embodiments, also has access to memory to support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In other embodi-
ments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, con-
trol and management of objects, data or content being cached
by the appliance 200 in addition to access, control and man-
agement of security, network traffic, network access, com-
pression or any other function or operation performed by the
appliance 200. Further examples of specific caching policies
are further described herein.

The encryption engine 234 comprises any logic, business
rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryption
engine 234 may also setup or establish SSL or TLS connec-
tions on behalf of the client 102a-102x, server 106a-106#, or
appliance 200. As such, the encryption engine 234 provides
offloading and acceleration of SSL. processing. In one
embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a client
1024a-102# and a server 1064-1067. In some embodiments,
the encryption engine 234 is in communication with the
Encryption processor 260. In other embodiments, the encryp-
tion engine 234 comprises executable instructions running on
the Encryption processor 260.

The multi-protocol compression engine 238 comprises any
logic, business rules, function or operations for compressing
one or more protocols of a network packet, such as any of the
protocols used by the network stack 267 of the device 200. In
one embodiment, multi-protocol compression engine 238
compresses bi-directionally between clients 102a-102 and
servers 106a-106r any TCP/IP based protocol, including
Messaging Application Programming Interface (MAPI)
(email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) pro-
tocol (file transfer), Independent Computing Architecture
(ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice
Over IP (VoIP) protocol. In other embodiments, multi-proto-
col compression engine 238 provides compression of Hyper-
text Markup Language (HTML) based protocols and in some
embodiments, provides compression of any markup lan-
guages, such as the Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238
provides compression of any high-performance protocol,
such as any protocol designed for appliance 200 to appliance
200 communications. In another embodiment, the multi-pro-

25

30

40

45

22

tocol compression engine 238 compresses any payload of or
any communication using a modified transport control pro-
tocol, such as Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows
(TCP-LW), acongestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accel-
erates performance for users accessing applications via desk-
top clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications
like Oracle, SAP and Siebel, and even mobile clients, such as
the Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204
and integrating with packet processing engine 240 accessing
the network stack 267 is able to compress any of the protocols
carried by the TCP/IP protocol, such as any application layer
protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level process-
ing of packets received and transmitted by appliance 200 via
network ports 266. The high speed layer 2-7 integrated packet
engine 240 may comprise a buffer for queuing one or more
network packets during processing, such as for receipt of a
network packet or transmission of a network packet. Addi-
tionally, the high speed layer 2-7 integrated packet engine 240
is in communication with one or more network stacks 267 to
send and receive network packets via network ports 266. The
high speed layer 2-7 integrated packet engine 240 works in
conjunction with encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238.
In particular, encryption engine 234 is configured to perform
SSL processing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content switching and request-level cache redi-
rection, and multi-protocol compression logic 238 is config-
ured to perform functions related to compression and decom-
pression of data.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received,
or outgoing, i.e., transmitted, network packets. In some
embodiments, the high speed layer 2-7 integrated packet
engine 240 processes network packets responsive to the timer
242. The packet processing timer 242 provides any type and
form of signal to the packet engine 240 to notify, trigger, or
communicate a time related event, interval or occurrence. In
many embodiments, the packet processing timer 242 operates
in the order of milliseconds, such as for example 100 ms, 50
ms or 25 ms. For example, in some embodiments, the packet
processing timer 242 provides time intervals or otherwise
causes a network packet to be processed by the high speed
layer 2-7 integrated packet engine 240 at a 10 ms time inter-
val, while in other embodiments, at a 5 ms time interval, and
still yet in further embodiments, as shortasa 3,2, or 1 ms time
interval. The high speed layer 2-7 integrated packet engine
240 may be interfaced, integrated or in communication with
the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression engine 238 during
operation. As such, any of the logic, functions, or operations
of the encryption engine 234, cache manager 232, policy
engine 236 and multi-protocol compression logic 238 may be
performed responsive to the packet processing timer 242
and/or the packet engine 240. Therefore, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres-

US 9,098,335 B2

23

sion logic 238 may be performed at the granularity of time
intervals provided via the packet processing timer 242, for
example, at a time interval of less than or equal to 10 ms. For
example, in one embodiment, the cache manager 232 may
perform invalidation of any cached objects responsive to the
high speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet
processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG. 2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide ameans by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user
space 202 or kernel space 204. The GUI 210 may be any type
and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or appli-
cation, such as a browser. The CLI 212 may be any type and
form of command line or text-based interface, such as a
command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tesh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc-
tions to support interaction with the appliance 200 or operat-
ing system by a user via the GUI 210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning prop-
erly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.
In other embodiments, the health monitoring program 216
interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter-
mine any condition, status or error with any portion of the
appliance 200.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or pro-
cesses, such as another daemon service 218 as appropriate. As
known to those skilled in the art, a daemon service 218 may

10

15

20

25

30

35

40

45

50

55

60

65

24

run unattended to perform continuous or periodic system
wide functions, such as network control, or to perform any
desired task. In some embodiments, one or more daemon
services 218 run in the user space 202, while in other embodi-
ments, one or more daemon services 218 run in the kernel
space.

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function-
ality or operations: SSL. VPN connectivity 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu-
nications between one or more clients 102 and one or more
servers 106. Each of the servers 106 may provide one or more
network related services 270a-270n (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other-
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera-
tions of the appliance 200.

The vServer 275 may comprise software, hardware or any
combination of software and hardware. The vServer 275 may
comprise any type and form of program, service, task, process
or executable instructions operating in user mode 202, kernel
mode 204 or any combination thereof in the appliance 200.
The vServer 275 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques
described herein, such as SSL. VPN 280, switching/load bal-
ancing 284, Domain Name Service resolution 286, accelera-
tion 288 and an application firewall 290. In some embodi-
ments, the vServer 275 establishes a connection to a service
270 of a server 106. The service 275 may comprise any
program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi-
ments, the service 270 may communicate on a specific IP
address, or IP address and port.

In some embodiments, the vServer 275 applies one or more
policies of the policy engine 236 to network communications
between the client 102 and server 106. In one embodiment,
the policies are associated with a VServer 275. In another
embodiment, the policies are based on a user, or a group of
users. In yet another embodiment, a policy is global and
applies to one or more vServers 275a-275n, and any user or
group of users communicating via the appliance 200. In some
embodiments, the policies of the policy engine have condi-
tions upon which the policy is applied based on any content of
the communication, such as internet protocol address, port,
protocol type, header or fields in a packet, or the context of the
communication, such as user, group of the user, vServer 275,
transport layer connection, and/or identification or attributes
of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or
interfaces with the policy engine 236 to determine authenti-
cation and/or authorization of a remote user or a remote client
102 to access the computing environment 15, application,
and/or data file from a server 106. In another embodiment, the
appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization

US 9,098,335 B2

25

of'a remote user or aremote client 102 to have the application
delivery system 190 deliver one or more of the computing
environment 15, application, and/or data file. In yet another
embodiment, the appliance 200 establishes a VPN or SSL
VPN connection based on the policy engine’s 236 authenti-
cation and/or authorization of a remote user or a remote client
102 In one embodiment, the appliance 200 controls the flow
of'network traffic and communication sessions based on poli-
cies of the policy engine 236. For example, the appliance 200
may control the access to a computing environment 15, appli-
cation or data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes a trans-
port layer connection, such as a TCP or UDP connection with
a client 102 via the client agent 120. In one embodiment, the
vServer 275 listens for and receives communications from the
client 102. In other embodiments, the vServer 275 establishes
a transport layer connection, such as a TCP or UDP connec-
tion with a client server 106. In one embodiment, the vServer
275 establishes the transport layer connection to an internet
protocol address and port of a server 270 running on the server
106. In another embodiment, the vServer 275 associates a first
transport layer connection to a client 102 with a second trans-
port layer connection to the server 106. In some embodi-
ments, a vServer 275 establishes a pool of transport layer
connections to a server 106 and multiplexes client requests
via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104'. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104', such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com-
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli-
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the client agent
102, decrypts the communications, and transmits the commu-
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer
connection may be a pooled transport layer connection. As
such, the appliance 200 provides an end-to-end secure trans-
port layer connection for the client 102 between the two
networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet
internet protocol or intranetIP 282 address of the client 102 on
the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected to
the second network 104' via the appliance 200, the appliance
200 establishes, assigns or otherwise provides an IntranetIP,
which is network identifier, such as IP address and/or host
name, for the client 102 on the second network 104'. The
appliance 200 listens for and receives on the second or private
network 104' for any communications directed towards the
client 102 using the client’s established IntranetIP 282. In one
embodiment, the appliance 200 acts as or on behalf of the
client 102 on the second private network 104. For example, in
another embodiment, a vServer 275 listens for and responds
to communications to the IntranetIP 282 of the client 102. In
some embodiments, if a computing device 100 on the second
network 104' transmits a request, the appliance 200 processes

10

15

20

25

30

35

40

45

50

55

60

26

the request as if it were the client 102. For example, the
appliance 200 may respond to a ping to the client’s IntranetIP
282. In another example, the appliance may establish a con-
nection, such as a TCP or UDP connection, with computing
device 100 on the second network 104 requesting a connec-
tion with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com-
munications between the client 102 and server 106: 1) com-
pression; 2) decompression; 3) Transmission Control Proto-
col pooling; 4) Transmission Control Protocol multiplexing;
5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of
much of the processing load caused by repeatedly opening
and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each
server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech-
nique is referred to herein as “connection pooling”.

In some embodiments, in order to seamlessly splice com-
munications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing”. In
some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl-
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement expected by the
client 102 on the appliance’s 200 transport layer connection
to the client 102. In some embodiments, the packet checksum
of the transport layer protocol is recalculated to account for
these translations.

In another embodiment, the appliance 200 provides
switching or load-balancing functionality 284 for communi-
cations between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application-
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the
appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides resolu-
tion of a DNS request from clients 102. In some embodi-
ments, the appliance intercepts” a DNS request transmitted by
the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name

US 9,098,335 B2

27

to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client’s DNS request with an
1P address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and block-
ing illegitimate requests. In some embodiments, the applica-
tion firewall 290 protects against denial of service (DoS)
attacks. In other embodiments, the appliance inspects the
content of intercepted requests to identify and block applica-
tion-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili-
ties, such as one or more of the following: 1) bufter overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi-
soning, 6) broken access control list (ACLs) or weak pass-
words, 7) cross-site scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon-
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems vulnerabili-
ties, and 16) zero-day exploits. In an embodiment, the appli-
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica-
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica-
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.

In still yet other embodiments, the application firewall 290
protects any confidential information contained in the net-
work communication. The application firewall 290 may
inspect or analyze any network communication in accordance
with the rules or polices of the engine 236 to identify any
confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in
the network communication one or more occurrences of a
credit card number, password, social security number, name,
patient code, contact information, and age. The encoded por-
tion of the network communication may comprise these
occurrences or the confidential information. Based on these
occurrences, in one embodiment, the application firewall 290
may take a policy action on the network communication, such
as prevent transmission of the network communication. In
another embodiment, the application firewall 290 may
rewrite, remove or otherwise mask such identified occurrence
or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a
performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appliance
200 receives the monitoring agent 197 from the monitoring
service 198 or monitoring server 106 as depicted in FIG. 1D.
In some embodiments, the appliance 200 stores the monitor-
ing agent 197 in storage, such as disk, for delivery to any
client or server in communication with the appliance 200. For
example, in one embodiment, the appliance 200 transmits the
monitoring agent 197 to a client upon receiving a request to
establish a transport layer connection. In other embodiments,
the appliance 200 transmits the monitoring agent 197 upon

10

15

20

25

30

35

40

45

50

55

60

65

28

establishing the transport layer connection with the client
102. In another embodiment, the appliance 200 transmits the
monitoring agent 197 to the client upon intercepting or
detecting a request for a web page. In yet another embodi-
ment, the appliance 200 transmits the monitoring agent 197 to
a client or a server in response to a request from the monitor-
ing server 198. In one embodiment, the appliance 200 trans-
mits the monitoring agent 197 to a second appliance 200' or
appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut-
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor-
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni-
tors the performance of any user sessions traversing the appli-
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres-
sion. In some embodiments, the monitoring agent 197 mea-
sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea-
sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
200.

C. Client Agent

Referring now to FIG. 3, an embodiment ofthe client agent
120 is depicted. The client 102 includes a client agent 120 for
establishing and exchanging communications with the appli-
ance 200 and/or server 106 via a network 104. In brief over-
view, the client 102 operates on computing device 100 having
an operating system with a kernel mode 302 and a user mode
303, and a network stack 310 with one or more layers 310a-
3105. The client 102 may have installed and/or execute one or
more applications. In some embodiments, one or more appli-
cations may communicate via the network stack 310 to a
network 104. One of the applications, such as a web browser,
may also include a first program 322. For example, the first
program 322 may be used in some embodiments to install
and/or execute the client agent 120, or any portion thereof.
The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications
from the network stack 310 from the one or more applica-
tions.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro-
tocols for any of the following layers of the OSI model: 1)

US 9,098,335 B2

29

physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LLAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter-
net protocol.

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application Pro-
gramming Interface (MAPI) (email), File Transfer Protocol
(FTP), HyperText Transfer Protocol (HTTP), Common Inter-
net File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop
Protocol (RDP), Wireless Application Protocol (WAP),
Mobile IP protocol, and Voice Over IP (VoIP) protocol. In
another embodiment, the network stack 310 comprises any
type and form of transport control protocol, such as a modi-
fied transport control protocol, for example a Transaction
TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP,
may be used by the network stack 310, such as for voice
communications or real-time data communications.

Furthermore, the network stack 310 may include one or
more network drivers supporting the one or more layers, such
as a TCP driver or a network layer driver. The network drivers
may be included as part of the operating system of the com-
puting device 100 or as part of any network interface cards or
other network access components of the computing device
100. In some embodiments, any of the network drivers of the
network stack 310 may be customized, modified or adapted to
provide a custom or modified portion of the network stack
310 in support of any of the techniques described herein. In
other embodiments, the acceleration program 120 is designed
and constructed to operate with or work in conjunction with
the network stack 310 installed or otherwise provided by the
operating system of the client 102.

The network stack 310 comprises any type and form of
interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com-
munications of the client 102. In one embodiment, an inter-
face to the network stack 310 comprises an application pro-
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro-
vide any type and form of data structure, such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver

25

40

45

30

or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or operate
in user-mode 303, such as an application layer of the network
stack 310. For example, a first portion 310a of the network
stack may provide user-mode access to the network stack 310
to an application while a second portion 310a of the network
stack 310 provides access to a network. In some embodi-
ments, a first portion 310a of the network stack may comprise
one or more upper layers of the network stack 310, such as
any of layers 5-7. In other embodiments, a second portion
3105 of the network stack 310 comprises one or more lower
layers, such as any of layers 1-4. Each of the first portion 310a
and second portion 3105 of the network stack 310 may com-
prise any portion of the network stack 310, at any one or more
network layers, in user-mode 203, kernel-mode, 202, or com-
binations thereof, or at any portion of a network layer or
interface point to a network layer or any portion of or interface
point to the user-mode 203 and kernel-mode 203.

The interceptor 350 may comprise software, hardware, or
any combination of software and hardware. In one embodi-
ment, the interceptor 350 intercept a network communication
at any point in the network stack 310, and redirects or trans-
mits the network communication to a destination desired,
managed or controlled by the interceptor 350 or client agent
120. For example, the interceptor 350 may intercept a net-
work communication of a network stack 310 of a first network
and transmit the network communication to the appliance 200
for transmission on a second network 104. In some embodi-
ments, the interceptor 350 comprises any type interceptor 350
comprises a driver, such as a network driver constructed and
designed to interface and work with the network stack 310. In
some embodiments, the client agent 120 and/or interceptor
350 operates at one or more layers of the network stack 310,
such as at the transport layer. In one embodiment, the inter-
ceptor 350 comprises a filter driver, hooking mechanism, or
any form and type of suitable network driver interface that
interfaces to the transport layer of the network stack, such as
via the transport driver interface (TDI). In some embodi-
ments, the interceptor 350 interfaces to a first protocol layer,
such as the transport layer and another protocol layer, such as
any layer above the transport protocol layer, for example, an
application protocol layer. In one embodiment, the intercep-
tor 350 may comprise a driver complying with the Network
Driver Interface Specification (NDIS), or a NDIS driver. In
another embodiment, the interceptor 350 may comprise a
min-filter or a mini-port driver. In one embodiment, the inter-
ceptor 350, or portion thereof, operates in kernel-mode 202.
In another embodiment, the interceptor 350, or portion
thereof, operates in user-mode 203. In some embodiments, a
portion of the interceptor 350 operates in kernel-mode 202
while another portion of the interceptor 350 operates in user-
mode 203. In other embodiments, the client agent 120 oper-
ates in user-mode 203 but interfaces via the interceptor 350 to
a kernel-mode driver, process, service, task or portion of the
operating system, such as to obtain a kernel-level data struc-
ture 225. In further embodiments, the interceptor 350 is a
user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro-
gramming interface (API) calls to set the destination infor-
mation, such as destination IP address and/or port to a desired

US 9,098,335 B2

31

location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a [P
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
1P address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com-
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
200.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the
intercepted DNS request to the appliance 200 for DNS reso-
Iution. In one embodiment, the appliance 200 resolves the
DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a DNS
server 106.

In yet another embodiment, the client agent 120 may com-
prise two agents 120 and 120'. In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi-
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120'.

The client agent 120 and/or interceptor 350 may operate at
or interface with a protocol layer in a manner transparent to
any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica-
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the client
agent 120 and/or interceptor 350 can interface with the trans-
port layer to secure, optimize, accelerate, route or load-bal-
ance any communications provided via any protocol carried
by the transport layer, such as any application layer protocol
over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a manner
transparent to any application, a user ofthe client 102, and any
other computing device, such as a server, in communications
with the client 102. The client agent 120 and/or interceptor
350 may be installed and/or executed on the client 102 in a
manner without modification of an application. In some
embodiments, the user of the client 102 or a computing device
in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/
or interceptor 350. As such, in some embodiments, the client
agent 120 and/or interceptor 350 is installed, executed, and/or
operated transparently to an application, user of the client
102, another computing device, such as a server, or any of the
protocol layers above and/or below the protocol layer inter-
faced to by the interceptor 350.

10

15

20

25

30

35

40

45

50

55

60

65

32

The client agent 120 includes an acceleration program 302,
a streaming client 306, a collection agent 304, and/or moni-
toring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA)
client, or any portion thereof, developed by Citrix Systems,
Inc. of Fort Lauderdale, Fla., and is also referred to as an ICA
client. In some embodiments, the client 120 comprises an
application streaming client 306 for streaming an application
from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for
accelerating communications between client 102 and server
106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/
scanning and collecting end-point information for the appli-
ance 200 and/or server 106.

In some embodiments, the acceleration program 302 com-
prises a client-side acceleration program for performing one
or more acceleration techniques to accelerate, enhance or
otherwise improve a client’s communications with and/or
access to a server 106, such as accessing an application pro-
vided by a server 106. The logic, functions, and/or operations
of'the executable instructions of the acceleration program 302
may perform one or more of the following acceleration tech-
niques: 1) multi-protocol compression, 2) transport control
protocol pooling, 3) transport control protocol multiplexing,
4) transport control protocol buffering, and 5) caching via a
cache manager. Additionally, the acceleration program 302
may perform encryption and/or decryption of any communi-
cations received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or
more of the acceleration techniques in an integrated manner
or fashion. Additionally, the acceleration program 302 can
perform compression on any of the protocols, or multiple-
protocols, carried as a payload of a network packet of the
transport layer protocol.

The streaming client 306 comprises an application, pro-
gram, process, service, task or executable instructions for
receiving and executing a streamed application from a server
106. A server 106 may stream one or more application data
files to the streaming client 306 for playing, executing or
otherwise causing to be executed the application on the client
102. In some embodiments, the server 106 transmits a set of
compressed or packaged application data files to the stream-
ing client 306. In some embodiments, the plurality of appli-
cation files are compressed and stored on a file server within
an archive file such as a CAB, ZIP, SIT, TAR, JAR or other
archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits
the files to the client 102. In another embodiment, the client
102 decompresses, unpackages or unarchives the application
files. The streaming client 306 dynamically installs the appli-
cation, or portion thereof, and executes the application. In one
embodiment, the streaming client 306 may be an executable
program. In some embodiments, the streaming client 306
may be able to launch another executable program.

The collection agent 304 comprises an application, pro-
gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col-
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide

US 9,098,335 B2

33

access, authentication and authorization control of the cli-
ent’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and scanning mechanism, which identi-
fies and determines one or more attributes or characteristics of
the client. For example, the collection agent 304 may identify
and determine any one or more of the following client-side
attributes: 1) the operating system an/or a version of an oper-
ating system, 2) a service pack of the operating system, 3) a
running service, 4) a running process, and 5) a file. The
collection agent 304 may also identify and determine the
presence or versions of any one or more of the following on
the client: 1) antivirus software, 2) personal firewall software,
3) anti-spam software, and 4) internet security software. The
policy engine 236 may have one or more policies based on
any one or more of the attributes or characteristics of the client
or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with FIGS.
1D and 2B. The monitoring agent 197 may be any type and
form of script, such as Visual Basic or Java script. In one
embodiment, the monitoring agent 129 monitors and mea-
sures performance of any portion of the client agent 120. For
example, in some embodiments, the monitoring agent 129
monitors and measures performance of the acceleration pro-
gram 302. In another embodiment, the monitoring agent 129
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 129 moni-
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 129 monitors
and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 129 monitors and mea-
sures any resource of the client 102, such as memory, CPU
and disk.

The monitoring agent 197 may monitor and measure per-
formance of any application of the client. In one embodiment,
the monitoring agent 129 monitors and measures perfor-
mance of a browser on the client 102. In some embodiments,
the monitoring agent 197 monitors and measures perfor-
mance of any application delivered via the client agent 120. In
other embodiments, the monitoring agent 197 measures and
monitors end user response times for an application, such as
web-based or HTTP response times. The monitoring agent
197 may monitor and measure performance of an ICA or RDP
client. In another embodiment, the monitoring agent 197
measures and monitors metrics for a user session or applica-
tion session. In some embodiments, monitoring agent 197
measures and monitors an ICA or RDP session. In one
embodiment, the monitoring agent 197 measures and moni-
tors the performance of the appliance 200 in accelerating
delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin com-
ponent, such an ActiveX control or Java control or script that
is loaded into and executed by an application. For example,
the first program comprises an ActiveX control loaded and
run by a web browser application, such as in the memory
space or context of the application. In another embodiment,
the first program 322 comprises a set of executable instruc-
tions loaded into and run by the application, such as a
browser. In one embodiment, the first program 322 comprises
a designed and constructed program to install the client agent
120. In some embodiments, the first program 322 obtains,
downloads, or receives the client agent 120 via the network

5

10

15

20

25

30

35

40

45

50

55

60

65

34

from another computing device. In another embodiment, the
first program 322 is an installer program or a plug and play
manager for installing programs, such as network drivers, on
the operating system of the client 102.

D. Systems and Methods for Providing Virtualized Applica-
tion Delivery Controller

Referring now to FIG. 4A, a block diagram depicts one
embodiment of a virtualization environment 400. In brief
overview, a computing device 100 includes a hypervisor
layer, a virtualization layer, and a hardware layer. The hyper-
visor layer includes a hypervisor 401 (also referred to as a
virtualization manager) that allocates and manages access to
anumber of physical resources in the hardware layer (e.g., the
processor(s) 421, and disk(s) 428) by at least one virtual
machine executing in the virtualization layer. The virtualiza-
tion layer includes at least one operating system 410 and a
plurality of virtual resources allocated to the at least one
operating system 410. Virtual resources may include, without
limitation, a plurality of virtual processors 432a, 432b, 432¢
(generally 432), and virtual disks 4424, 4425, 442¢ (generally
442), as well as virtual resources such as virtual memory and
virtual network interfaces. The plurality of virtual resources
and the operating system 410 may be referred to as a virtual
machine 406. A virtual machine 406 may include a control
operating system 405 in communication with the hypervisor
401 and used to execute applications for managing and con-
figuring other virtual machines on the computing device 100.

In greater detail, a hypervisor 401 may provide virtual
resources to an operating system in any manner which simu-
lates the operating system having access to a physical device.
A hypervisor 401 may provide virtual resources to any num-
ber of guest operating systems 410a, 4105 (generally 410). In
some embodiments, a computing device 100 executes one or
more types of hypervisors. In these embodiments, hypervi-
sors may be used to emulate virtual hardware, partition physi-
cal hardware, virtualize physical hardware, and execute vir-
tual machines that provide access to computing
environments. Hypervisors may include those manufactured
by VM Ware, Inc., of Palo Alto, Calif.; the XEN hypervisor, an
open source product whose development is overseen by the
open source Xen.org community; HyperV, VirtualServer or
virtual PC hypervisors provided by Microsoft, or others. In
some embodiments, a computing device 100 executing a
hypervisor that creates a virtual machine platform on which
guest operating systems may execute is referred to as a host
server. In one of these embodiments, for example, the com-
puting device 100 is a XEN SERVER provided by Citrix
Systems, Inc., of Fort Lauderdale, Fla.

In some embodiments, a hypervisor 401 executes within an
operating system executing on a computing device. In one of
these embodiments, a computing device executing an oper-
ating system and a hypervisor 401 may be said to have a host
operating system (the operating system executing on the com-
puting device), and a guest operating system (an operating
system executing within a computing resource partition pro-
vided by the hypervisor 401). In other embodiments, a hyper-
visor 401 interacts directly with hardware on a computing
device, instead of executing on a host operating system. In
one of these embodiments, the hypervisor 401 may be said to
be executing on “bare metal,” referring to the hardware com-
prising the computing device.

In some embodiments, a hypervisor 401 may create a vir-
tual machine 406a-c (generally 406) in which an operating
system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image to
create a virtual machine 406. In another of these embodi-
ments, the hypervisor 401 executes an operating system 410

US 9,098,335 B2

35

within the virtual machine 406. In still another of these
embodiments, the virtual machine 406 executes an operating
system 410.

In some embodiments, the hypervisor 401 controls proces-
sor scheduling and memory partitioning for a virtual machine
406 executing on the computing device 100. In one of these
embodiments, the hypervisor 401 controls the execution of at
least one virtual machine 406. In another of these embodi-
ments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware
resource provided by the computing device 100. In other
embodiments, the hypervisor 401 controls whether and how
physical processor capabilities are presented to the virtual
machine 406.

A control operating system 405 may execute at least one
application for managing and configuring the guest operating
systems. In one embodiment, the control operating system
405 may execute an administrative application, such as an
application including a user interface providing administra-
tors with access to functionality for managing the execution
of a virtual machine, including functionality for executing a
virtual machine, terminating an execution of a virtual
machine, or identifying a type of physical resource for allo-
cation to the virtual machine. In another embodiment, the
hypervisor 401 executes the control operating system 405
within a virtual machine 406 created by the hypervisor401. In
still another embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to directly
access physical resources on the computing device 100. In
some embodiments, a control operating system 405a on a
computing device 100a may exchange data with a control
operating system 4055 on a computing device 1005, via com-
munications between a hypervisor 401a and a hypervisor
4015. In this way, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources. In one of these
embodiments, this functionality allows a hypervisor to man-
age a pool of resources distributed across a plurality of physi-
cal computing devices. In another of these embodiments,
multiple hypervisors manage one or more of the guest oper-
ating systems executed on one of the computing devices 100.

In one embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to interact
with at least one guest operating system 410. In another
embodiment, a guest operating system 410 communicates
with the control operating system 405 via the hypervisor 401
in order to request access to a disk or a network. In still
another embodiment, the guest operating system 410 and the
control operating system 405 may communicate via a com-
munication channel established by the hypervisor 401, such
as, for example, via a plurality of shared memory pages made
available by the hypervisor 401.

In some embodiments, the control operating system 405
includes a network back-end driver for communicating
directly with networking hardware provided by the comput-
ing device 100. In one of these embodiments, the network
back-end driver processes at least one virtual machine request
from at least one guest operating system 110. In other
embodiments, the control operating system 405 includes a
block back-end driver for communicating with a storage ele-
ment on the computing device 100. In one of these embodi-
ments, the block back-end driver reads and writes data from
the storage element based upon at least one request received
from a guest operating system 410.

In one embodiment, the control operating system 405
includes a tools stack 404. In another embodiment, a tools

10

15

20

25

30

35

40

45

50

55

60

65

36

stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating
systems 405 (for example, on a second computing device
1004), or managing virtual machines 4065, 406¢ on the com-
puting device 100. In another embodiment, the tools stack
404 includes customized applications for providing improved
management functionality to an administrator of a virtual
machine farm. In some embodiments, at least one of the tools
stack 404 and the control operating system 405 include a
management API that provides an interface for remotely con-
figuring and controlling virtual machines 406 running on a
computing device 100. In other embodiments, the control
operating system 405 communicates with the hypervisor 401
through the tools stack 104.

In one embodiment, the hypervisor 401 executes a guest
operating system 410 within a virtual machine 406 created by
the hypervisor 401. In another embodiment, the guest oper-
ating system 410 provides a user of the computing device 100
with access to resources within a computing environment. In
still another embodiment, a resource includes a program, an
application, a document, a file, a plurality of applications, a
plurality of files, an executable program file, a desktop envi-
ronment, a computing environment, or other resource made
available to a user of the computing device 100. In yet another
embodiment, the resource may be delivered to the computing
device 100 via a plurality of access methods including, but not
limited to, conventional installation directly on the comput-
ing device 100, delivery to the computing device 100 via a
method for application streaming, delivery to the computing
device 100 of output data generated by an execution of the
resource on a second computing device 100" and communi-
cated to the computing device 100 via a presentation layer
protocol, delivery to the computing device 100 of output data
generated by an execution of the resource via a virtual
machine executing on a second computing device 100', or
execution from a removable storage device connected to the
computing device 100, such as a USB device, or via a virtual
machine executing on the computing device 100 and gener-
ating output data. In some embodiments, the computing
device 100 transmits output data generated by the execution
of the resource to another computing device 100"

In one embodiment, the guest operating system 410, in
conjunction with the virtual machine on which it executes,
forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred to
as a “Domain U HVM (Hardware Virtual Machine) virtual
machine”. In another embodiment, a fully-virtualized
machine includes software emulating a Basic Input/Output
System (BIOS) in order to execute an operating system within
the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides
functionality by communicating with the hypervisor 401. In
such an embodiment, the driver may be aware that it executes
within a virtualized environment. In another embodiment, the
guest operating system 410, in conjunction with the virtual
machine on which it executes, forms a paravirtualized virtual
machine, which is aware that it is a virtual machine; such a
machine may be referred to as a “Domain U PV virtual
machine”. In another embodiment, a paravirtualized machine
includes additional drivers that a fully-virtualized machine
does not include. In still another embodiment, the paravirtu-
alized machine includes the network back-end driver and the
block back-end driver included in a control operating system
405, as described above.

Referring now to FIG. 4B, a block diagram depicts one
embodiment of a plurality of networked computing devices in
a system in which at least one physical host executes a virtual

US 9,098,335 B2

37

machine. In brief overview, the system includes a manage-
ment component 404 and a hypervisor 401. The system
includes a plurality of computing devices 100, a plurality of
virtual machines 406, a plurality of hypervisors 401, a plu-
rality of management components referred to as tools stacks
404, and a physical resource 421, 428. The plurality of physi-
cal machines 100 may each be provided as computing devices
100, described above in connection with FIGS. 1E-1H and
4A.

In greater detail, a physical disk 428 is provided by a
computing device 100 and stores at least a portion of a virtual
disk 442. In some embodiments, a virtual disk 442 is associ-
ated with a plurality of physical disks 428. In one of these
embodiments, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources, allowing a hyper-
visor to manage a pool of resources distributed across a plu-
rality of physical computing devices. In some embodiments,
a computing device 100 on which a virtual machine 406
executes is referred to as a physical host 100 or as a host
machine 100.

The hypervisor executes on a processor on the computing
device 100. The hypervisor allocates, to a virtual disk, an
amount of access to the physical disk. In one embodiment, the
hypervisor 401 allocates an amount of space on the physical
disk. In another embodiment, the hypervisor 401 allocates a
plurality of pages on the physical disk. In some embodiments,
the hypervisor provisions the virtual disk 442 as part of a
process of initializing and executing a virtual machine 450.

In one embodiment, the management component 4044 is
referred to as a pool management component 404a. In another
embodiment, a management operating system 405q, which
may be referred to as a control operating system 405a,
includes the management component. In some embodiments,
the management component is referred to as a tools stack. In
one of these embodiments, the management component is the
tools stack 404 described above in connection with FIG. 4A.
In other embodiments, the management component 404 pro-
vides a user interface for receiving, from a user such as an
administrator, an identification of a virtual machine 406 to
provision and/or execute. In still other embodiments, the
management component 404 provides a user interface for
receiving, from a user such as an administrator, the request for
migration of a virtual machine 4065 from one physical
machine 100 to another. In further embodiments, the man-
agement component 404 identifies a computing device 1005
on which to execute a requested virtual machine 4064 and
instructs the hypervisor 4015 on the identified computing
device 1005 to execute the identified virtual machine; such a
management component may be referred to as a pool man-
agement component.

Referring now to FIG. 4C, embodiments of a virtual appli-
cation delivery controller or virtual appliance 450 are
depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application deliv-
ery controller) described above in connection with FIGS. 2A
and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGS. 4A
and 4B. Instead of the functionality ofthe application delivery
controller being deployed in the form of an appliance 200,
such functionality may be deployed in a virtualized environ-
ment 400 on any computing device 100, such as a client 102,
server 106 or appliance 200.

Referring now to FIG. 4C, a diagram of an embodiment of
a virtual appliance 450 operating on a hypervisor 401 of a
server 106 is depicted. As with the appliance 200 of FIGS. 2A

20

25

30

40

45

55

38

and 2B, the virtual appliance 450 may provide functionality
for availability, performance, offload and security. For avail-
ability, the virtual appliance may perform load balancing
between layers 4 and 7 of the network and may also perform
intelligent service health monitoring. For performance
increases via network traffic acceleration, the virtual appli-
ance may perform caching and compression. To offload pro-
cessing of any servers, the virtual appliance may perform
connection multiplexing and pooling and/or SSL processing.
For security, the virtual appliance may perform any of the
application firewall functionality and SSL. VPN function of
appliance 200.

Any of the modules of the appliance 200 as described in
connection with FIG. 2A may be packaged, combined,
designed or constructed in a form of'the virtualized appliance
delivery controller 450 deployable as one or more software
modules or components executable in a virtualized environ-
ment 300 or non-virtualized environment on any server, such
as an off the shelf server. For example, the virtual appliance
may be provided in the form of an installation package to
install on a computing device. With reference to FIG. 2A, any
of the cache manager 232, policy engine 236, compression
238, encryption engine 234, packet engine 240, GUI 210, CLI
212, shell services 214 and health monitoring programs 216
may be designed and constructed as a software component or
module to run on any operating system of a computing device
and/or of a virtualized environment 300. Instead of using the
encryption processor 260, processor 262, memory 264 and
network stack 267 of the appliance 200, the virtualized appli-
ance 400 may use any of these resources as provided by the
virtualized environment 400 or as otherwise available on the
server 106.

Still referring to FIG. 4C, and in brief overview, any one or
more vServers 275A-275N may be in operation or executed
in a virtualized environment 400 of any type of computing
device 100, such as any server 106. Any of the modules or
functionality of the appliance 200 described in connection
with FIG. 2B may be designed and constructed to operate in
either a virtualized or non-virtualized environment of a
server. Any of the vServer 275, SSL. VPN 280, Intranet UP
282, Switching 284, DNS 286, acceleration 288, App FW 280
and monitoring agent may be packaged, combined, designed
or constructed in a form of application delivery controller 450
deployable as one or more software modules or components
executable on a device and/or virtualized environment 400.

In some embodiments, a server may execute multiple vir-
tual machines 406a-406x in the virtualization environment
with each virtual machine running the same or different
embodiments of the virtual application delivery controller
450. In some embodiments, the server may execute one or
more virtual appliances 450 on one or more virtual machines
on a core of a multi-core processing system. In some embodi-
ments, the server may execute one or more virtual appliances
450 on one or more virtual machines on each processor of a
multiple processor device.

E. Systems and Methods for Providing a Multi-Core Archi-
tecture

In accordance with Moore’s Law, the number of transistors
that may be placed on an integrated circuit may double
approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has
been around 3.5-4 GHz range since 2005. In some cases, CPU
manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add
additional cores to their processors to provide additional per-
formance. Products, such as those of software and network-
ing vendors, that rely on CPUs for performance gains may

US 9,098,335 B2

39

improve their performance by leveraging these multi-core
CPUs. The software designed and constructed for a single
CPU may be redesigned and/or rewritten to take advantage of
a multi-threaded, parallel architecture or otherwise a multi-
core architecture.

A multi-core architecture of the appliance 200, referred to
as nCore or multi-core technology, allows the appliance in
some embodiments to break the single core performance
barrier and to leverage the power of multi-core CPUs. In the
previous architecture described in connection with FIG. 2A, a
single network or packet engine is run. The multiple cores of
the nCore technology and architecture allow multiple packet
engines to run concurrently and/or in parallel. With a packet
engine running on each core, the appliance architecture lever-
ages the processing capacity of additional cores. In some
embodiments, this provides up to a 7x increase in perfor-
mance and scalability.

Illustrated in FIG. 5A are some embodiments of work, task,
load or network traffic distribution across one or more pro-
cessor cores according to a type of parallelism or parallel
computing scheme, such as functional parallelism, data par-
allelism or flow-based data parallelism. In brief overview,
FIG. 5A illustrates embodiments of a multi-core system such
as an appliance 200" with n-cores, a total of cores numbers 1
through N. In one embodiment, work, load or network traffic
can be distributed among a first core 505A, a second core
505B, a third core 505C, a fourth core 505D, a fifth core 505E,
a sixth core 505F, a seventh core 505G, and so on such that
distribution is across all or two or more of the n cores S05N
(hereinafter referred to collectively as cores 505.) There may
be multiple VIPs 275 each running on a respective core of the
plurality of cores. There may be multiple packet engines 240
each running on a respective core of the plurality of cores.
Any of the approaches used may lead to different, varying or
similar work load or performance level 515 across any of the
cores. For a functional parallelism approach, each core may
run a different function of the functionalities provided by the
packet engine, a VIP 275 or appliance 200. In a data parallel-
ism approach, data may be paralleled or distributed across the
cores based on the Network Interface Card (NIC) or VIP 275
receiving the data. In another data parallelism approach, pro-
cessing may be distributed across the cores by distributing
data flows to each core.

In further detail to FIG. 5A, in some embodiments, load,
work or network traffic can be distributed among cores 505
according to functional parallelism 500. Functional parallel-
ism may be based on each core performing one or more
respective functions. In some embodiments, a first core may
perform a first function while a second core performs a sec-
ond function. In functional parallelism approach, the func-
tions to be performed by the multi-core system are divided
and distributed to each core according to functionality. In
some embodiments, functional parallelism may be referred to
as task parallelism and may be achieved when each processor
or core executes a different process or function on the same or
different data. The core or processor may execute the same or
different code. In some cases, different execution threads or
code may communicate with one another as they work. Com-
munication may take place to pass data from one thread to the
next as part of a worktlow.

In some embodiments, distributing work across the cores
505 according to functional parallelism 500, can comprise
distributing network traffic according to a particular function
such as network input/output management (NW 1/O) 510A,
secure sockets layer (SSL) encryption and decryption 510B
and transmission control protocol (TCP) functions 510C.
This may lead to a work, performance or computing load 515

10

15

20

25

30

35

40

45

50

55

60

65

40

based on a volume or level of functionality being used. In
some embodiments, distributing work across the cores 505
according to data parallelism 540, can comprise distributing
an amount of work 515 based on distributing data associated
with a particular hardware or software component. In some
embodiments, distributing work across the cores 505 accord-
ing to flow-based data parallelism 520, can comprise distrib-
uting data based on a context or flow such that the amount of
work 515A-N on each core may be similar, substantially
equal or relatively evenly distributed.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
or VIP of the appliance. For example, core 1 may perform
network /O processing for the appliance 200" while core 2
performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4
may perform layer 7 or application layer processing and
traffic management. Each of the cores may perform the same
function or different functions. Each of the cores may per-
form more than one function. Any of the cores may run any of
the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func-
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A, division by function
may lead to different cores running at different levels of
performance or load 515.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
of the appliance. For example, core 1 may perform network
1/0O processing for the appliance 200' while core 2 performs
TCP connection management for the appliance. Likewise,
core 3 may perform SSL offloading while core 4 may perform
layer 7 or application layer processing and traffic manage-
ment. Each of the cores may perform the same function or
different functions. Each of the cores may perform more than
one function. Any of the cores may run any of the function-
ality or portions thereof identified and/or described in con-
junction with FIGS. 2A and 2B. In this the approach, the work
across the cores may be divided by function in either a coarse-
grained or fine-grained manner. In some cases, as illustrated
in FIG. 5A division by function may lead to different cores
running at different levels of load or performance.

The functionality or tasks may be distributed in any
arrangement and scheme. For example, FIG. 5B illustrates a
first core, Core 1 505A, processing applications and pro-
cesses associated with network I/O functionality 510A. Net-
work traffic associated with network I/0, in some embodi-
ments, can be associated with a particular port number. Thus,
outgoing and incoming packets having a port destination
associated with NW I/O 510A will be directed towards Core
1 505A which is dedicated to handling all network traffic
associated with the NW 1/O port. Similarly, Core 2 505B is
dedicated to handling functionality associated with SSL pro-
cessing and Core 4 505D may be dedicated handling all TCP
level processing and functionality.

While FIG. 5A illustrates functions such as network 1/O,
SSL and TCP, other functions can be assigned to cores. These
other functions can include any one or more of the functions
or operations described herein. For example, any of the func-
tions described in conjunction with FIGS. 2A and 2B may be
distributed across the cores on a functionality basis. In some
cases, a first VIP 275A may run on a first core while a second
VIP 275B with a different configuration may run on a second
core. In some embodiments, each core 505 can handle a

US 9,098,335 B2

41

particular functionality such that each core 505 can handle the
processing associated with that particular function. For
example, Core 2 505B may handle SSL offloading while Core
4 505D may handle application layer processing and traffic
management.

In other embodiments, work, load or network traffic may
be distributed among cores 505 according to any type and
form of data parallelism 540. In some embodiments, data
parallelism may be achieved in a multi-core system by each
core performing the same task or functionally on different
pieces of distributed data. In some embodiments, a single
execution thread or code controls operations on all pieces of
data. In other embodiments, different threads or instructions
control the operation, but may execute the same code. Insome
embodiments, data parallelism is achieved from the perspec-
tive of a packet engine, vServers (VIPs) 275A-C, network
interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appli-
ance 200. For example, each core may run the same packet
engine or VIP code or configuration but operate on different
sets of distributed data. Each networking hardware or soft-
ware construct can receive different, varying or substantially
the same amount of data, and as a result may have varying,
different or relatively the same amount of load 515

Inthe case of a data parallelism approach, the work may be
divided up and distributed based on VIPs, NICs and/or data
flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed
among the VIPs by having each VIP work on a distributed set
of'data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core
for each VIP handling that traffic. In another of these
approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the
network traffic. For example, network traffic of a first NIC
may be distributed to a first core while network traffic of a
second NIC may be distributed to a second core. In some
cases, a core may process data from multiple NICs.

While FIG. 5A illustrates a single vServer associated with
a single core 505, as is the case for VIP1 275A, VIP2 275B
and VIP3 275C. In some embodiments, a single vServer can
be associated with one or more cores 505. In contrast, one or
more vServers can be associated with a single core 505.
Associating a vServer with a core 505 may include that core
505 to process all functions associated with that particular
vServer. In some embodiments, each core executes a VIP
having the same code and configuration. In other embodi-
ments, each core executes a VIP having the same code but
different configuration. In some embodiments, each core
executes a VIP having different code and the same or different
configuration.

Like vServers, NICs can also be associated with particular
cores 505. In many embodiments, NICs can be connected to
one or more cores 505 such that when a NIC receives or
transmits data packets, a particular core 505 handles the pro-
cessing involved with receiving and transmitting the data
packets. In one embodiment, a single NIC can be associated
with a single core 505, as is the case with NIC1 542D and
NIC2 542E. In other embodiments, one or more NICs can be
associated with a single core 505. In other embodiments, a
single NIC can be associated with one or more cores 505. In
these embodiments, load could be distributed amongst the
one or more cores 505 such that each core 505 processes a
substantially similar amount of load. A core 505 associated
with a NIC may process all functions and/or data associated
with that particular NIC.

10

15

20

25

30

35

40

45

50

55

60

65

42

While distributing work across cores based on data of VIPs
or NICs may have a level of independency, in some embodi-
ments, this may lead to unbalanced use of cores as illustrated
by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can be
distributed among cores 505 based on any type and form of
data flow. In another of these approaches, the work may be
divided or distributed among cores based on data flows. For
example, network traffic between a client and a server tra-
versing the appliance may be distributed to and processed by
one core of the plurality of cores. In some cases, the core
initially establishing the session or connection may be the
core for which network traffic for that session or connection is
distributed. In some embodiments, the data flow is based on
any unit or portion of network traffic, such as a transaction, a
request/response communication or traffic originating from
anapplication on a client. In this manner and in some embodi-
ments, data flows between clients and servers traversing the
appliance 200' may be distributed in a more balanced manner
than the other approaches.

In flow-based data parallelism 520, distribution of data is
related to any type of flow of data, such as request/response
pairings, transactions, sessions, connections or application
communications. For example, network traffic between a cli-
ent and a server traversing the appliance may be distributed to
and processed by one core of the plurality of cores. In some
cases, the core initially establishing the session or connection
may be the core for which network traffic for that session or
connection is distributed. The distribution of data flow may be
such that each core 505 carries a substantially equal or rela-
tively evenly distributed amount of load, data or network
traffic.

In some embodiments, the data flow is based on any unit or
portion of network traffic, such as a transaction, a request/
response communication or traffic originating from an appli-
cation on a client. In this manner and in some embodiments,
data flows between clients and servers traversing the appli-
ance 200" may be distributed in a more balanced manner than
the other approached. In one embodiment, data flow can be
distributed based on a transaction or a series of transactions.
This transaction, in some embodiments, can be between a
client and a server and can be characterized by an IP address
or other packet identifier. For example, Core 1 505A can be
dedicated to transactions between a particular client and a
particular server, therefore the load 536A on Core 1 505A
may be comprised of the network traffic associated with the
transactions between the particular client and server. Allocat-
ing the network traffic to Core 1 505A can be accomplished
by routing all data packets originating from either the particu-
lar client or server to Core 1 505A.

While work or load can be distributed to the cores based in
part on transactions, in other embodiments load or work can
be allocated on a per packet basis. In these embodiments, the
appliance 200 can intercept data packets and allocate them to
a core 505 having the least amount of load. For example, the
appliance 200 could allocate a first incoming data packet to
Core 1 505A because the load 536 A on Core 1 is less than the
load 536B-N on the rest of the cores 505B-N. Once the first
data packet is allocated to Core 1 505A, the amount of load
536 A on Core 1 505A is increased proportional to the amount
of processing resources needed to process the first data
packet. When the appliance 200 intercepts a second data
packet, the appliance 200 will allocate the load to Core 4
505D because Core 4 505D has the second least amount of
load. Allocating data packets to the core with the least amount

US 9,098,335 B2

43

of load can, in some embodiments, ensure that the load
536A-N distributed to each core 505 remains substantially
equal.

In other embodiments, load can be allocated on a per unit
basis where a section of network traffic is allocated to a
particular core 505. The above-mentioned example illustrates
load balancing on a per/packet basis. In other embodiments,
load can be allocated based on a number of packets such that
every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets
allocated to a core 505 can be a number determined by an
application, user or administrator and can be any number
greater than zero. In still other embodiments, load can be
allocated based on a time metric such that packets are distrib-
uted to a particular core 505 for a predetermined amount of
time. In these embodiments, packets can be distributed to a
particular core 505 for five milliseconds or for any period of
time determined by a user, program, system, administrator or
otherwise. After the predetermined time period elapses, data
packets are transmitted to a different core 505 for the prede-
termined period of time.

Flow-based data parallelism methods for distributing
work, load or network traffic among the one or more cores
505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part
of the appliance 200, by an application or set of executable
instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent
executing on a computing device in communication with the
appliance 200.

The functional and data parallelism computing schemes
illustrated in FIG. 5A can be combined in any manner to
generate a hybrid parallelism or distributed processing
scheme that encompasses function parallelism 500, data par-
allelism 540, flow-based data parallelism 520 or any portions
thereof. In some cases, the multi-core system may use any
type and form of load balancing schemes to distribute load
among the one or more cores 505. The load balancing scheme
may be used in any combination with any of the functional
and data parallelism schemes or combinations thereof.

Illustrated in FIG. 5B is an embodiment of a multi-core
system 545, which may be any type and form of one or more
systems, appliances, devices or components. This system
545, in some embodiments, can be included within an appli-
ance 200 having one or more processing cores 505A-N. The
system 545 can further include one or more packet engines
(PE) or packet processing engines (PPE) 548A-N communi-
cating with a memory bus 556. The memory bus may be used
to communicate with the one or more processing cores S05A-
N. Also included within the system 545 can be one or more
network interface cards (NIC) 552 and a flow distributor 550
which can further communicate with the one or more pro-
cessing cores 505A-N. The flow distributor 550 can comprise
a Receive Side Scaler (RSS) or Receive Side Scaling (RSS)
module 560.

Further referring to FIG. 5B, and in more detail, in one
embodiment the packet engine(s) 548 A-N can comprise any
portion of the appliance 200 described herein, such as any
portion of the appliance described in FIGS. 2A and 2B. The
packet engine(s) 548A-N can, in some embodiments, com-
prise any of the following elements: the packet engine 240, a
network stack 267; a cache manager 232; a policy engine 236;
a compression engine 238; an encryption engine 234; a GUI
210; a CLI1212; shell services 214; monitoring programs 216;
and any other software or hardware element able to receive
data packets from one of either the memory bus 556 or the one
of more cores 505A-N. In some embodiments, the packet

10

20

25

30

35

40

45

50

55

60

65

44

engine(s) 548 A-N can comprise one or more vServers 275A-
N, or any portion thereof. In other embodiments, the packet
engine(s) S48A-N can provide any combination of the fol-
lowing functionalities: SSL. VPN 280; Intranet UP 282;
switching 284; DNS 286; packet acceleration 288; App FW
280; monitoring such as the monitoring provided by a moni-
toring agent 197; functionalities associated with functioning
as a TCP stack; load balancing; SSL offloading and process-
ing; content switching; policy evaluation; caching; compres-
sion; encoding; decompression; decoding; application fire-
wall functionalities; XML processing and acceleration; and
SSL VPN connectivity.

The packet engine(s) 548A-N can, in some embodiments,
be associated with a particular server, user, client or network.
When a packet engine 548 becomes associated with a par-
ticular entity, that packet engine 548 can process data packets
associated with that entity. For example, should a packet
engine 548 be associated with a first user, that packet engine
548 will process and operate on packets generated by the first
user, or packets having a destination address associated with
the first user. Similarly, the packet engine 548 may choose not
to be associated with a particular entity such that the packet
engine 548 can process and otherwise operate on any data
packets not generated by that entity or destined for that entity.

In some instances, the packet engine(s) 548A-N can be
configured to carry out the any of the functional and/or data
parallelism schemes illustrated in FIG. SA. In these instances,
the packet engine(s) 548A-N can distribute functions or data
among the processing cores 505A-N so that the distribution is
according to the parallelism or distribution scheme. In some
embodiments, a single packet engine(s) 548 A-N carries out a
load balancing scheme, while in other embodiments one or
more packet engine(s) 548A-N carry out a load balancing
scheme. Each core 505A-N, in one embodiment, can be asso-
ciated with a particular packet engine 505 such that load
balancing can be carried out by the packet engine 505. Load
balancing may in this embodiment, require that each packet
engine 505 associated with a core 505 communicate with the
other packet engines 505 associated with cores 505 so that the
packet engines 505 can collectively determine where to dis-
tribute load. One embodiment of this process can include an
arbiter that receives votes from each packet engine 505 for
load. The arbiter can distribute load to each packet engine 505
based in part on the age of the engine’s vote and in some cases
a priority value associated with the current amount of load on
an engine’s associated core 505.

Any of'the packet engines running on the cores may run in
user mode, kernel or any combination thereof. In some
embodiments, the packet engine operates as an application or
program running is user or application space. In these
embodiments, the packet engine may use any type and form
of interface to access any functionality provided by the ker-
nel. In some embodiments, the packet engine operates in
kernel mode or as part of the kernel. In some embodiments, a
first portion of the packet engine operates in user mode while
asecond portion of the packet engine operates in kernel mode.
In some embodiments, a first packet engine on a first core
executes in kernel mode while a second packet engine on a
second core executes in user mode. In some embodiments, the
packet engine or any portions thereof operates on or in con-
junction with the NIC or any drivers thereof.

In some embodiments the memory bus 556 can be any type
and form of memory or computer bus. While a single memory
bus 556 is depicted in FIG. 5B, the system 545 can comprise
any number of memory buses 556. In one embodiment, each
packet engine 548 can be associated with one or more indi-
vidual memory buses 556.

US 9,098,335 B2

45

The NIC 552 can in some embodiments be any of the
network interface cards or mechanisms described herein. The
NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of
network 104. While a single NIC 552 is illustrated, the system
545 can comprise any number of NICs 552. In some embodi-
ments, each core 505A-N can be associated with one or more
single NICs 552. Thus, each core 505 can be associated with
a single NIC 552 dedicated to a particular core 505. The cores
505A-N can comprise any of the processors described herein.
Further, the cores 505A-N can be configured according to any
of the core 505 configurations described herein. Still further,
the cores 505A-N can have any of the core 505 functionalities
described herein. While FIG. 5B illustrates seven cores
505A-G, any number of cores 505 can be included within the
system 545. In particular, the system 545 can comprise “N”
cores, where “N” is a whole number greater than zero.

A core may have or use memory that is allocated or
assigned for use to that core. The memory may be considered
private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or
assigned to multiple cores. The memory may be considered
public or shared memory that is accessible by more than one
core. A core may use any combination of private and public
memory. With separate address spaces for each core, some
level of coordination is eliminated from the case of using the
same address space. With a separate address space, a core can
perform work on information and data in the core’s own
address space without worrying about conflicts with other
cores. Each packet engine may have a separate memory pool
for TCP and/or SSL connections.

Further referring to FIG. 5B, any of the functionality and/or
embodiments of the cores 505 described above in connection
with FIG. 5A can be deployed in any embodiment of the
virtualized environment described above in connection with
FIGS. 4A and 4B. Instead of the functionality ofthe cores 505
being deployed in the form of a physical processor 505, such
functionality may be deployed in a virtualized environment
400 on any computing device 100, such as a client 102, server
106 or appliance 200. In other embodiments, instead of the
functionality of the cores 505 being deployed in the form of
an appliance or a single device, the functionality may be
deployed across multiple devices in any arrangement. For
example, one device may comprise two or more cores and
another device may comprise two or more cores. For
example, a multi-core system may include a cluster of com-
puting devices, a server farm or network of computing
devices. In some embodiments, instead of the functionality of
the cores 505 being deployed in the form of cores, the func-
tionality may be deployed on a plurality of processors, such as
a plurality of single core processors.

In one embodiment, the cores 505 may be any type and
form of processor. In some embodiments, a core can function
substantially similar to any processor or central processing
unit described herein. In some embodiment, the cores 505
may comprise any portion of any processor described herein.
While FIG. 5A illustrates seven cores, there can exist any “N”
number of cores within an appliance 200, where “N” is any
whole number greater than one. In some embodiments, the
cores 505 can be installed within a common appliance 200,
while in other embodiments the cores 505 can be installed
within one or more appliance(s) 200 communicatively con-
nected to one another. The cores 505 can in some embodi-
ments comprise graphics processing software, while in other
embodiments the cores 505 provide general processing capa-
bilities. The cores 505 can be installed physically near each
other and/or can be communicatively connected to each other.

20

25

30

40

45

50

46

The cores may be connected by any type and form of bus or
subsystem physically and/or communicatively coupled to the
cores for transferring data between to, from and/or between
the cores.

While each core 505 can comprise software for communi-
cating with other cores, in some embodiments a core manager
(Not Shown) can facilitate communication between each core
505. In some embodiments, the kernel may provide core
management. The cores may interface or communicate with
each other using a variety of interface mechanisms. In some
embodiments, core to core messaging may be used to com-
municate between cores, such as a first core sending a mes-
sage or data to a second core via a bus or subsystem connect-
ing the cores. In some embodiments, cores may communicate
via any type and form of shared memory interface. In one
embodiment, there may be one or more memory locations
shared among all the cores. In some embodiments, each core
may have separate memory locations shared with each other
core. For example, a first core may have a first shared memory
with a second core and a second share memory with a third
core. In some embodiments, cores may communicate via any
type of programming or API, such as function calls via the
kernel. In some embodiments, the operating system may rec-
ognize and support multiple core devices and provide inter-
faces and API for inter-core communications.

The flow distributor 550 can be any application, program,
library, script, task, service, process or any type and form of
executable instructions executing on any type and form of
hardware. In some embodiments, the flow distributor 550
may any design and construction of circuitry to perform any
of the operations and functions described herein. In some
embodiments, the flow distributor distribute, forwards,
routes, controls and/ors manage the distribution of data pack-
ets among the cores 505 and/or packet engine or VIPs running
on the cores. The flow distributor 550, in some embodiments,
can be referred to as an interface master. In one embodiment,
the flow distributor 550 comprises a set of executable instruc-
tions executing on a core or processor of the appliance 200. In
another embodiment, the flow distributor 550 comprises a set
of'executable instructions executing on a computing machine
in communication with the appliance 200. In some embodi-
ments, the flow distributor 550 comprises a set of executable
instructions executing on a NIC, such as firmware. In still
other embodiments, the flow distributor 550 comprises any
combination of software and hardware to distribute data
packets among cores or processors. In one embodiment, the
flow distributor 550 executes on at least one of the cores
505A-N, while in other embodiments a separate flow dis-
tributor 550 assigned to each core S05A-N executes on an
associated core 505A-N. The flow distributor may use any
type and form of statistical or probabilistic algorithms or
decision making to balance the flows across the cores. The
hardware of the appliance, such as a NIC, or the kernel may be
designed and constructed to support sequential operations
across the NICs and/or cores.

In embodiments where the system 545 comprises one or
more flow distributors 550, each flow distributor 550 can be
associated with a processor 505 or a packet engine 548. The
flow distributors 550 can comprise an interface mechanism
thatallows each flow distributor 550 to communicate with the
other flow distributors 550 executing within the system 545.
In one instance, the one or more flow distributors 550 can
determine how to balance load by communicating with each
other. This process can operate substantially similarly to the
process described above for submitting votes to an arbiter
which then determines which flow distributor 550 should
receive the load. In other embodiments, a first flow distributor

US 9,098,335 B2

47

550' can identify the load on an associated core and determine
whether to forward a first data packet to the associated core
based on any of the following criteria: the load on the asso-
ciated core is above a predetermined threshold; the load on
the associated core is below a predetermined threshold; the
load on the associated core is less than the load on the other
cores; or any other metric that can be used to determine where
to forward data packets based in part on the amount of load on
a processor.

The flow distributor 550 can distribute network traffic
among the cores 505 according to a distribution, computing
or load balancing scheme such as those described herein. In
one embodiment, the flow distributor can distribute network
traffic or; pad according to any one of a functional parallelism
distribution scheme 550, a data parallelism load distribution
scheme 540, a flow-based data parallelism distribution
scheme 520, or any combination of these distribution scheme
or any load balancing scheme for distributing load among
multiple processors. The flow distributor 550 can therefore
act as a load distributor by taking in data packets and distrib-
uting them across the processors according to an operative
load balancing or distribution scheme. In one embodiment,
the flow distributor 550 can comprise one or more operations,
functions or logic to determine how to distribute packers,
work orload accordingly. In still other embodiments, the flow
distributor 550 can comprise one or more sub operations,
functions or logic that can identify a source address and a
destination address associated with a data packet, and distrib-
ute packets accordingly.

In some embodiments, the flow distributor 550 can com-
prise areceive-side scaling (RSS) network driver, module 560
or any type and form of executable instructions which dis-
tribute data packets among the one or more cores 505. The
RSS module 560 can comprise any combination of hardware
and software, In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distrib-
ute data packets across the cores 505A-N or among multiple
processors in a multi-processor network. The RSS module
560 can execute within the NIC 552 in some embodiments,
and in other embodiments can execute on any one of the cores
505.

In some embodiments, the RSS module 560 uses the
MICROSOFT receive-side-scaling (RSS) scheme. In one
embodiment, RSS is a Microsoft Scalable Networking initia-
tive technology that enables receive processing to be balanced
across multiple processors in the system while maintaining
in-order delivery of the data. The RSS may use any type and
form of hashing scheme to determine a core or processor for
processing a network packet.

The RSS module 560 can apply any type and form hash
function such as the Toeplitz hash function. The hash function
may be applied to the hash type or any the sequence of values.
The hash function may be a secure hash of any security level
or is otherwise cryptographically secure. The has function
may use a hash key. The size of the key is dependent upon the
hash function. For the Toeplitz hash, the size may be 40 bytes
for IPv6 and 16 bytes for IPv4.

The hash function may be designed and constructed based
on any one or more criteria or design goals. In some embodi-
ments, a hash function may be used that provides an even
distribution of hash result for different hash inputs and dif-
ferent hash types, including TCP/IPv4, TCP/IPv6, IPv4, and
IPv6 headers. In some embodiments, a hash function may be
used that provides a hash result that is evenly distributed when
a small number of buckets are present (for example, two or
four). In some embodiments, hash function may be used that
provides a hash result that is randomly distributed when a

5

10

20

25

30

35

40

45

50

55

60

48

large number of buckets were present (for example, 64 buck-
ets). In some embodiments, the hash function is determined
based on a level of computational or resource usage. In some
embodiments, the hash function is determined based on ease
or difficulty of implementing the hash in hardware. In some
embodiments, the hash function is determined bases on the
ease or difficulty of a malicious remote host to send packets
that would all hash to the same bucket.
The RSS may generate hashes from any type and form of
input, such as a sequence of values. This sequence of values
can include any portion of the network packet, such as any
header, field or payload of network packet, or portions
thereof. In some embodiments, the input to the hash may be
referred to as a hash type and include any tuples of informa-
tion associated with a network packet or data flow, such as any
of the following: a four tuple comprising at least two IP
addresses and two ports; a four tuple comprising any four sets
of values; a six tuple; a two tuple; and/or any other sequence
of numbers or values. The following are example of hash
types that may be used by RSS:
4-tuple of source TCP Port, source IP version 4 (IPv4)
address, destination TCP Port, and destination 1Pv4
address. This is the only required hash type to support.

4-tuple of source TCP Port, source IP version 6 (IPv6)
address, destination TCP Port, and destination IPv6
address.

2-tuple of source IPv4 address, and destination IPv4

address.

2-tuple of source IPv6 address, and destination IPv6

address.

2-tuple of source IPv6 address, and destination IPv6

address, including support for parsing IPv6 extension
headers.

The hash result or any portion thereof may used to identify
acore or entity, such as a packet engine or VIP, for distributing
a network packet. In some embodiments, one or more hash
bits or mask are applied to the hash result. The hash bit or
mask may be any number of bits or bytes. A NIC may support
any number of bits, such as seven bits. The network stack may
set the actual number of bits to be used during initialization.
The number will be between 1 and 7, inclusive.

The hash result may be used to identify the core or entity
via any type and form of table, such as a bucket table or
indirection table. In some embodiments, the number of hash-
result bits are used to index into the table. The range of the
hash mask may effectively define the size of the indirection
table. Any portion of the hash result or the hash result itself
may be used to index the indirection table. The values in the
table may identify any of the cores or processor, such as by a
core or processor identifier. In some embodiments, all of the
cores of the multi-core system are identified in the table. In
other embodiments, a port of the cores of the multi-core
system are identified in the table. The indirection table may
comprise any number of buckets for example 2 to 128 buckets
that may be indexed by a hash mask. Each bucket may com-
prise a range of index values that identify a core or processor.
In some embodiments, the flow controller and/or RSS module
may rebalance the network rebalance the network load by
changing the indirection table.

In some embodiments, the multi-core system 575 does not
include a RSS driver or RSS module 560. In some of these
embodiments, a software steering module (Not Shown) or a
software embodiment of the RSS module within the system
can operate in conjunction with or as part of the flow distribu-
tor 550 to steer packets to cores 505 within the multi-core
system 575.

US 9,098,335 B2

49

The flow distributor 550, in some embodiments, executes
within any module or program on the appliance 200, on any
one of the cores 505 and on any one of the devices or com-
ponents included within the multi-core system 575. In some
embodiments, the flow distributor 550' can execute on the first
core 505A, while in other embodiments the flow distributor
550" can execute on the NIC 552. In still other embodiments,
an instance of the flow distributor 550' can execute on each
core 505 included in the multi-core system 575. In this
embodiment, each instance of the flow distributor 550' can
communicate with other instances of the flow distributor 550
to forward packets back and forth across the cores 505. There
exist situations where a response to a request packet may not
be processed by the same core, i.e. the first core processes the
request while the second core processes the response. Inthese
situations, the instances of the flow distributor 550' can inter-
cept the packet and forward it to the desired or correct core
505, i.e. a flow distributor instance 550' can forward the
response to the first core. Multiple instances of the flow dis-
tributor 550' can execute on any number of cores 505 and any
combination of cores 505.

The flow distributor may operate responsive to any one or
more rules or policies. The rules may identify a core or packet
processing engine to receive a network packet, data or data
flow. The rules may identitfy any type and form of tuple
information related to a network packet, such as a 4-tuple of
source and destination IP address and source and destination
ports. Based on areceived packet matching the tuple specified
by the rule, the flow distributor may forward the packet to a
core or packet engine. In some embodiments, the packet is
forwarded to a core via shared memory and/or core to core
messaging.

Although FIG. 5B illustrates the flow distributor 550 as
executing within the multi-core system 575, in some embodi-
ments the flow distributor 550 can execute on a computing
device or appliance remotely located from the multi-core
system 575. In such an embodiment, the flow distributor 550
can communicate with the multi-core system 575 to take in
data packets and distribute the packets across the one or more
cores 505. The flow distributor 550 can, in one embodiment,
receive data packets destined for the appliance 200, apply a
distribution scheme to the received data packets and distribute
the data packets to the one or more cores 505 of the multi-core
system 575. In one embodiment, the flow distributor 550 can
be included in a router or other appliance such that the router
can target particular cores 505 by altering meta data associ-
ated with each packet so that each packet is targeted towards
a sub-node of the multi-core system 575. In such an embodi-
ment, CISCO’s vn-tag mechanism can be used to alter or tag
each packet with the appropriate meta data.

Illustrated in FIG. 5C is an embodiment of a multi-core
system 575 comprising one or more processing cores 505A-
N. In brief overview, one of the cores 505 can be designated
as a control core 505A and can be used as a control plane 570
for the other cores 505. The other cores may be secondary
cores which operate in a data plane while the control core
provides the control plane. The cores 505A-N may share a
global cache 580. While the control core provides a control
plane, the other cores in the multi-core system form or pro-
vide a data plane. These cores perform data processing func-
tionality on network traffic while the control provides initial-
ization, configuration and control of the multi-core system.
Further referring to FIG. 5C, and in more detail, the cores
505A-N as well as the control core 505A can be any processor
described herein. Furthermore, the cores 505A-N and the
control core 505A can be any processor able to function
within the system 575 described in FIG. 5C. Still further, the

10

15

20

25

30

35

40

45

50

55

60

65

50

cores S05A-N and the control core S05A can be any core or
group of cores described herein. The control core may be a
different type of core or processor than the other cores. In
some embodiments, the control may operate a different
packet engine or have a packet engine configured differently
than the packet engines of the other cores.

Any portion of the memory of each of the cores may be
allocated to or used for a global cache that is shared by the
cores. In brief overview, a predetermined percentage or pre-
determined amount of each of the memory of each core may
be used for the global cache. For example, 50% of each
memory of each code may be dedicated or allocated to the
shared global cache. That is, in the illustrated embodiment, 2
GB of each core excluding the control plane core or core 1
may be used to form a 28 GB shared global cache. The
configuration of the control plane such as via the configura-
tion services may determine the amount of memory used for
the shared global cache. In some embodiments, each core
may provide a different amount of memory for use by the
global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodi-
ments, any of the cores may also have alocal cache in memory
not allocated to the global shared memory. Each of the cores
may store any portion of network traffic to the global shared
cache. Each of the cores may check the cache for any content
to use in a request or response. Any of the cores may obtain
content from the global shared cache to use in a data flow,
request or response.

The global cache 580 can be any type and form of memory
or storage element, such as any memory or storage element
described herein. In some embodiments, the cores 505 may
have access to a predetermined amount of memory (i.e. 32
GB or any other memory amount commensurate with the
system 575.) The global cache 580 can be allocated from that
predetermined amount of memory while the rest of the avail-
able memory can be allocated among the cores 505. In other
embodiments, each core 505 can have a predetermined
amount of memory. The global cache 580 can comprise an
amount of the memory allocated to each core 505. This
memory amount can be measured in bytes, or can be mea-
sured as a percentage of the memory allocated to each core
505. Thus, the global cache 580 can comprise 1 GB of
memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associ-
ated with each core 505. In some embodiments, only a portion
of the cores 505 provide memory to the global cache 580,
while in other embodiments the global cache 580 can com-
prise memory not allocated to the cores 505.

Each core 505 can use the global cache 580 to store net-
work traffic or cache data. In some embodiments, the packet
engines of the core use the global cache to cache and use data
stored by the plurality of packet engines. For example, the
cache manager of FIG. 2A and cache functionality of FIG. 2B
may use the global cache to share data for acceleration. For
example, each of the packet engines may store responses,
such as HTML data, to the global cache. Any of the cache
managers operating on a core may access the global cache to
server caches responses to client requests.

In some embodiments, the cores 505 can use the global
cache 580 to store a port allocation table which can be used to
determine data flow based in part on ports. In other embodi-
ments, the cores 505 can use the global cache 580 to store an
address lookup table or any other table or list that can be used
by the flow distributor to determine where to direct incoming
and outgoing data packets. The cores 505 can, in some
embodiments read from and write to cache 580, while in other

US 9,098,335 B2

51

embodiments the cores 505 can only read from or write to
cache 580. The cores may use the global cache to perform
core to core communications.

The global cache 580 may be sectioned into individual
memory sections where each section can be dedicated to a
particular core 505. In one embodiment, the control core
505A can receive a greater amount of available cache, while
the other cores 505 can receiving varying amounts or access
to the global cache 580.

In some embodiments, the system 575 can comprise a
control core S05A. While FIG. 5C illustrates core 1 505A as
the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a
single control core is depicted, the system 575 can comprise
one or more control cores each having a level of control over
the system. In some embodiments, one or more control cores
can each control a particular aspect of the system 575. For
example, one core can control deciding which distribution
scheme to use, while another core can determine the size of
the global cache 580.

The control plane of the multi-core system may be the
designation and configuration of a core as the dedicated man-
agement core or as a master core. This control plane core may
provide control, management and coordination of operation
and functionality the plurality of cores in the multi-core sys-
tem. This control plane core may provide control, manage-
ment and coordination of allocation and use of memory of the
system among the plurality of cores in the multi-core system,
including initialization and configuration of the same. In
some embodiments, the control plane includes the flow dis-
tributor for controlling the assignment of data flows to cores
and the distribution of network packets to cores based on data
flows. In some embodiments, the control plane core runs a
packet engine and in other embodiments, the control plane
core is dedicated to management and control of the other
cores of the system.

The control core 505A can exercise a level of control over
the other cores 505 such as determining how much memory
should be allocated to each core 505 or determining which
core 505 should be assigned to handle a particular function or
hardware/software entity. The control core 505A, in some
embodiments, can exercise control over those cores 505
within the control plan 570. Thus, there can exist processors
outside of the control plane 570 which are not controlled by
the control core 505A. Determining the boundaries of the
control plane 570 can include maintaining, by the control core
505A or agent executing within the system 575, a list of those
cores 505 controlled by the control core 505A. The control
core 505 A can control any of the following: initialization of a
core; determining when a core is unavailable; re-distributing
load to other cores 505 when one core fails; determining
which distribution scheme to implement; determining which
core should receive network traffic; determining how much
cache should be allocated to each core; determining whether
to assign a particular function or element to a particular core;
determining whether to permit cores to communicate with
one another; determining the size ofthe global cache 580; and
any other determination of a function, configuration or opera-
tion of the cores within the system 575.

F. Systems and Methods for Dynamic Connection Spillover

Referring now to FIG. 6, an embodiment of a system for
providing management of transport layer connections via an
appliance using a dynamic maximum connection threshold is
depicted. In brief overview, the appliance 200 establishes a
first vServer 275A to load balance 284 a plurality of clients
1024-1027 access to one or more services 270A-270N of a
first set of servers 106 A-106N. The appliance 200 includes a

20

40

45

55

52

connection management mechanism 610 for managing and
balancing transport layer connection requests from clients
1024-102% to one or more set of services 270A-270N. The
appliance 200 establishes for the first vServer 275A a maxi-
mum dynamic connection threshold 1020A based on the sum
of the connection capacity 625A-625N each of the services
270A-270N are targeted or configured to handle. Via moni-
toring agents 420A-420N, the appliance monitors the opera-
tional status of each of the services 270A-270N. If any of the
services 270A-270N have a change in status from available to
not available, or not available to available, the appliance 200
adjusts the dynamic maximum connection threshold 1020A
by including or not including the corresponding connection
capacity 625A-625B of the service in the summation of the
threshold. For example, if the appliance 200 detects a first
service 270A has a status of not available, the appliance 200
subtracts the connection capacity 625A of the first service
270A from the maximum dynamic connection threshold
1020A. As such, the appliance 200 dynamically adjusts the
maximum connection threshold 1020 for a vServer 275 in
real-time in accordance with the monitored status of the ser-
vices 270A-270N and each service’s corresponding connec-
tion capacity 625A-625N.

In further detail, the connection management mechanism
610 comprises software, hardware, or any combination of
software and hardware having logic, functions or operations
for receiving and managing connection requests and commu-
nications from one or more clients 102A-102N. In one
embodiment, the connection management mechanism 610
receives or intercepts transport layer connection requests and
communications between the clients 102A-102N and one or
more services 270A-270N. The connection management
mechanism 610 may include an application, program, ser-
vice, process, task, thread or any type and form of executable
instructions. In another embodiment, the connection manage-
ment mechanism 610 identifies, determines or selects a
vServer 275 for processing a received communication from a
client 102.

In some embodiments, the connection management
mechanism 610 determines if the dynamic maximum connec-
tion threshold 1020 has been reached or exceeded. The con-
nection management mechanism 610 determines if the
dynamic maximum connection threshold is exceeded, and
whether or not to establish a backup or second vServer 275N,
e.g., a spillover vServer. Upon detecting the number of active
transport layer connections of the first vServer 275 A exceeds
the dynamically adjusted maximum connection threshold
1020, the connection management mechanism 610 may
direct, transfer or otherwise provide a received transport layer
connection request of a client 102 to the second vServer 275N
for handling. By using the dynamically adjusted maximum
connection threshold 1020, the connection management
mechanism 610 dynamically and automatically spillovers
connection requests from clients 102 from a first vServer
275A to a backup or second vServer 275N.

In other embodiments, the connection management
mechanism 610 may maintain connection or session persis-
tence between a client 102 and the vServer 275A-275N han-
dling requests for the client 102. In some embodiments, the
connection management mechanism 610 selects the spillover
vServer 275N for handling a client request even though the
number of active connections of the first vServer 275A does
not exceed the maximum connection threshold 1020. In other
embodiments, the connection management mechanism 610
selects the first vServer 275A for handling a client request
event though requests from other clients are directed to the
spillover vServer 275N. In one embodiment, the connection

US 9,098,335 B2

53
management mechanism 610 may select the first vServer
275A or second vServer 275N based on which vServer 275
most recently handled a request from the client 102.

Upon detecting the dynamically adjusted maximum con-
nection threshold 1020 has been exceeded for the first vServer
275A and/or the second vServer 275N, the connection man-
agement mechanism 610, in one embodiment, may determine
not to establish another spillover vServer 275N but instead
redirects the client 102 directly to a server 106 or otherwise to
bypass the appliance 200. For example, the connection man-
agement mechanism 610 may determine the dynamically
adjusted maximum connection threshold 1020B for the spill-
over vServer 275N has been reached and may redirect the
client 102 to bypass the appliance 200 instead of establishing
athird vServer 275N for spillover. In these embodiments, the
connection management mechanism 610 may transmit a redi-
rect Uniform Resource Locator (URL) 660 to the client 102
for the client 102 to connect to in response to the client’s
connection request. The URL 660 may identify any one of the
servers 106 or services 270.

In yet another embodiment, the appliance 200 and/or con-
nection management mechanism 610 manages the number of
active connections and performs dynamic spillover tech-
niques for a plurality of vServers 275A-275N. In one embodi-
ment, the second vServer 275B may be managing connec-
tions from a plurality of clients 102A-102N to a second set of
services 270A'-270N'. In some embodiments, the appliance
200 monitors a second dynamic maximum connection thresh-
old 1020B for a second vServer 275B. In one embodiment,
the second vServer 275B may be acting as a spillover vServer
for the first vServer 275N or a third vServer.

The connection capacity 625 for a service 270 comprises a
predetermined number of clients, transport layer connections
or users a service 270 is designed, configured or intended to
handle or process. In some embodiments, the connection
capacity 625 comprises a maximum number of clients, con-
nections or users 625 a service 270 is configured, targeted or
intended to handle or process. In one embodiment, a user,
such as the administrator of the appliance 200 configures the
connection capacity 625 for the service 270. In another
embodiment, the appliance 200 determines the connection
capacity 625 from the service 270 or server 106 providing the
service 270. For example, the appliance 200 may transmit a
request to the server 106 or service 270 for its connection
capacity, and in response, the server 106 transmits to the
appliance a predetermined number of active connections it
may handle.

Each of the connection capacities 625A-625N may com-
prise any combination of a same or different connection
capacity 625 as another capacity. In one embodiment, the
connection capacity 625A for a first server 270A is different
than the connection capacity 625B of a second server 270B.
In some embodiments, the connection capacity 625A for a
first service 270A is the same as the connection capacity 625B
for a second service 270B. In another embodiment, the con-
nection capacity 625A of a service 270A may be set to a value
below the service’s actual connection capacity. In other
embodiments, the connection capacity 625A of a service
270A may be set to a value above the service’s actual con-
nection capacity. In some embodiments, the connection
capacities may represent a connection-based weighting of
each of the services 270A-270N in a first set or second set of
a plurality of services.

The dynamic maximum connection threshold 1020A-
620N (generally 620) comprises a predetermined number
identifying a maximum number of active transport layer con-
nections the vServer 275 is configured, designed or otherwise

10

15

20

25

30

35

40

45

50

55

60

65

54

intended to process, handle or have active. In one embodi-
ment, a user, such as an administrator of the appliance 200,
configures the dynamic maximum connection threshold
1020. In another embodiment, the appliance 200 sets the
dynamic maximum connection threshold 1020 to a default
value of the sum of the configured connection capacity for
each of the services 270 A-270N managed by the vServer 275.

The appliance 200 may adjust the dynamic maximum con-
nection threshold 1020 in response to events corresponding to
avServer 250 and to one or more services 270. The appliance
200 may monitor the services 270 using one or more moni-
toring agents 420. In one embodiment, the appliance may
adjust the dynamic maximum connection threshold in
response to a monitoring agent 420 reporting a service 270 as
unavailable. If a service 270 with a given connection capacity
is reported as unavailable, the appliance may subtract the
service’s 270 connection capacity from the dynamic maxi-
mum connection threshold 1020 of the vServer providing
access to that service 270. Further, if the service 270 previ-
ously reported as unavailable is then reported as available, the
appliance 200 may then add back the connection capacity for
that service 270 to the dynamic maximum connection thresh-
old 1020.

The monitoring agents may monitor any aspect of a service
270, and may use any technique to determine whether a given
service is available. In one embodiment, a monitor may mea-
sure the response time of a service 270 and report the service
asunavailable if the response time exceeds a given threshold.
In another embodiment, a monitor may measure the response
time of a service 270 and report the service as unavailable if
the response time exceeds a determined average response
time for the service 270. In still another embodiment, a moni-
tor may measure the response time of a service 270 and report
the service 270 as unavailable if the response time exceeds a
given deviation from a determined average response time for
the service.

Although the technique of dynamically adjusted maximum
connection threshold 1020 is generally discussed in view of
transport layer connections and connection requests, the
appliance may perform this technique for any type and form
of transport layer protocol or application layer protocol car-
ried via the transport layer. In one embodiment, the appliance
200 may perform dynamic connection spillover among
vServers 275A-275N using a dynamically adjusted maxi-
mum connection threshold 1020 for Secure Socket Layer
(SSL) or Transport Layer Security (TLS) connections and
connection requests.

Referring now to FIG. 7, steps of an embodiment of a
method for practicing a technique of dynamical spillover
management is depicted. In brief overview, the method com-
prises establishing, on an appliance, a first virtual server
which directs transport layer connection requests from a plu-
rality of clients to a first plurality of services (step 705);
establishing, via the appliance, a predetermined threshold
identifying a maximum active transport layer connection
capacity for the first virtual server, the predetermined thresh-
old comprising a sum of a predetermined connection capacity
for each of the plurality of services (step 710); monitoring, by
the appliance, a status for each of the plurality of services
(step 715); and adjusting, by the appliance, the predetermined
threshold to comprise the sum of the predetermined connec-
tion capacity for each of the plurality of services having a
status of available (step 720). The appliance may then receive
a transport layer connection request (step 725); determine
that a number of active connections to the first virtual server

US 9,098,335 B2

55

exceeds the predetermined threshold (step 730). The appli-
ance may then determine to provide the request to a second
virtual server (step 740).

Still referring to FIG. 7, now in greater detail, an appliance
establishes a first virtual server which directs transport layer
connection requests from a plurality of clients to a first plu-
rality of services (step 705). This virtual server may comprise
any virtual server capable of providing access to one or more
services 270. In one embodiment, the virtual server may
comprise a vServer 275. In one embodiment, the appliance
may establish the virtual server upon startup of the appliance.
In another embodiment, the appliance may establish the vir-
tual server in response to a previously established virtual
server exceeding maximum connection threshold. In one
embodiment, the appliance may establish a plurality of virtual
servers.

In the embodiment shown, the appliance may then estab-
lish a dynamic maximum connection threshold 1020 for the
first virtual server (step 710). In some embodiments, the
threshold comprises a sum of a predetermined connection
capacity for each of the plurality of services. In one embodi-
ment, the threshold 1020 may be initially configured by a user
or administrator of the appliance. In another embodiment, the
threshold 1020 may be initially determined by the appliance
by polling one or more services 270.

In the embodiment shown, the appliance may then monitor
a status for each of the plurality of services (step 715). The
appliance may monitor a status for each of the services 270
using any means. In one embodiment, the appliance may use
a monitoring agent 420. In another embodiment, the appli-
ance may use a plurality of monitoring agents 420. In one
embodiment, the appliance may monitor the status for each of
the services at predetermined time intervals, for example
once every 0.01, 0.1, 0.2, 0.5, or 1 seconds. In another
embodiment, the appliance may monitor the status for each of
the services 270 asynchronously.

In the embodiment shown, the appliance may then adjust
the predetermined threshold to comprise the sum of the pre-
determined connection capacity for each of the plurality of
services having a status of available (step 720). For example,
if a service 270 with a given connection capacity is reported
as unavailable, the appliance may subtract the service’s 270
connection capacity from the dynamic maximum connection
threshold 1020 of the vServer providing access to that service
270. Further, if a service 270 previously reported as unavail-
able is then reported as available, the appliance 200 may then
add back the connection capacity for that service 270 to the
dynamic maximum connection threshold 1020.

In the embodiment shown, the appliance may then receive
atransport layer connection request (step 725). The transport
layer request may comprise any request to connect to a ser-
vice 270. The transport layer request may be received from
any computing device including a client 102, server 106, or a
second appliance 200. In one embodiment, the request may
identify a type of service 270. For example, the transport layer
request may comprise a request for HI'TP service. Or, for
example, the transport layer request may comprise a request
for UDP service.

In the embodiment shown, the appliance may then deter-
mine whether the dynamic maximum connection threshold
1020 of the first virtual server has been exceeded. The appli-
ance may compare the current connection load for the first
virtual server with the current value of the dynamic maximum
connection threshold for the first virtual server. In one
embodiment, the first virtual server may comprise a primary
or default virtual server. In another embodiment, the first
virtual server may comprise a primary or default virtual

25

40

45

50

56

server for a particular type of service. If the dynamic maxi-
mum connection threshold 1020 of the first virtual server has
not been exceeded, the appliance may provide the connection
request to the first virtual server (step 735).

Ifthe dynamic maximum connection threshold 1020 of the
first virtual server has been exceeded, the appliance may
establish, in response to the threshold being exceeded, a sec-
ond virtual server (step 740). In other embodiments, a second
virtual server may already have been established prior to
some or any of the steps shown. The second virtual server may
provide access to a second plurality of services 270. In one
embodiment, one or more of the second plurality of services
270 may comprise the same type of service 270 as one or
more of the first plurality of services. The appliance may then
establish and subsequently adjust a dynamic maximum con-
nection threshold 1020 corresponding to the second virtual
server. The appliance may then provide the connection
request to the second virtual server 200 (step 755).

In other embodiments, a second virtual server may already
have been established prior to some or any of the steps shown.
The second virtual server may provide access to a second
plurality of services 270. In one embodiment, one or more of
the second plurality of services 270 may comprise the same
type of service 270 as one or more of the first plurality of
services. The appliance may then provide the connection
request to the second virtual server 200 (step 755). The appli-
ance may then establish and subsequently adjust a dynamic
maximum connection threshold 1020 corresponding to the
second virtual server.

In still other embodiments, if the dynamic maximum con-
nection threshold 1020 of the first virtual server has been
exceeded, the appliance may, in response to the threshold
being exceeded, redirect the client making the request to
another resource. In one embodiment, the appliance may
transmit a URL to the client comprising the address of a
server 106 or service 270 such that the client may bypass the
appliance 200 and access the server 106 or service 270
directly. In one embodiment, the appliance may transmit a
URL to the client comprising the address of a second appli-
ance 200. In still another embodiment, the appliance 200 may
redirect the client request to a second appliance based on a
dynamically determined connection capacity for the second
appliance.

The appliance 200 may then determine whether the client
making the connection request has a previously existing con-
nection with either the first or a second virtual server (step
750). In some embodiments, an appliance may assign a pri-
ority to providing connection requests from a client to virtual
servers that have previously serviced or are currently servic-
ing connections from the client. For example, if a connection
request is received from a client, and the client has a currently
existing connection with a first virtual server, the appliance
200 may provide the connection request to the first virtual
server even if the first virtual server is above its dynamic
maximum connection threshold. Or, for example, if a client
has a previous connection via a backup virtual server, and the
primary virtual server subsequently becomes available again,
the appliance 200 may still provide a subsequent connection
request from the client to the backup virtual server. In one
embodiment, a connection management mechanism 610, or
other appliance component may track previously established
or current connections so that incoming connection requests
from a client can be provided to a virtual server having pre-
viously serviced connections from the client.

US 9,098,335 B2

57
F. Systems and Methods for Dynamic Spillover Based on
Bandwidth

Referring now to FIGS. 8A and 8B, systems and methods
for dynamically managing connection spillover from a first
virtual server to a second virtual server based on bandwidth
are depicted. The appliance may establish or a user may
configure a bandwidth threshold for one or more virtual serv-
ers managing one or more services. The appliance monitors
the bandwidth used by a virtual server. In response to detect-
ing the bandwidth reaching or exceeding the bandwidth
threshold, the appliance dynamically directs client requests to
another virtual server. The bandwidth threshold may be
adjusted to take into account bandwidth capacity, response
times, virtual server performance or performance of the
server. The appliance manages virtual servers based on the
bandwidth usage to maintain performance of the virtual serv-
ers and the services managed by the virtual servers at a
desired level or within a predetermined performance range.

Referring now to FIG. 8A, an embodiment of an appliance
for providing dynamic virtual server spillover management
based on bandwidth is depicted. In brief overview, the appli-
ance 200 establishes a first vServer 275 A to manage access by
aplurality of clients 102a-1027 to one or more services 270 A-
270N of a first set of servers 106 A-106N. The appliance 200
includes a connection management mechanism 610 for man-
aging and balancing requests from clients 1024-1027 to one
or more set of services 270A-270N via one or more vServers
275A-275N. The appliance 200 establishes for a first vServer
275A a bandwidth threshold 820A, which may be specified
by a user. The appliance may establish a second vServer 275N
with a second bandwidth threshold 820B.

Viamonitoring agents 420A-420N, the appliance monitors
the operational status of each of the services 270A-270N. The
monitoring agents 420 may include a bandwidth detector 802
for measuring the bandwidth used by a virtual server 275. The
bandwidth detector 802 may at predetermined frequencies or
time frames determine a measured bandwidth 825A for a first
vServer 275A. The bandwidth detector 802 may also deter-
mine a measured bandwidth 825B for the second vServer
275N.

If the measured bandwidth for the first vServer 275A is
determined to have reached or exceeded the bandwidth
threshold 820A, the connection manager 610 of the appliance
may determine to direct client requests to the second vServer
275N. For example, a user may configure a bandwidth thresh-
old of 5 Mbytes per second. If the bandwidth detector 920
determines the measured bandwidth 825 of the vServer 275
exceeds 5 Mbytes a second, the appliance 200 via the con-
nection management mechanism 610 may switch client
requests to the second vServer 275N.

The bandwidth detector 802 includes or provides logic,
business rules, functions or operations for determining an
availability, idleness, throughput or utilization of network
bandwidth for one or more virtual servers 275. The band-
width detector 802 may include software, hardware or any
combination of software and hardware. The bandwidth detec-
tor 802 may comprise an application, program, script, library,
process, service, driver, task, thread or any type and form of
executable instructions.

In some embodiments, the bandwidth detector 802 deter-
mines a number of bytes transferred by the vServer 275 for
the measured bandwidth 825. The bandwidth detector 802
determines the number of transferred bytes over a time
period, such as every second or bytes transferred per second.
In one embodiment, the bandwidth detector 802 determines
an average number of bytes transferred per the time period,
such as per second. In some embodiments, the bandwidth

20

30

35

40

45

50

55

58

detector 802 measures the number of bytes transmitted by the
vServer 275. In other embodiments, the bandwidth detector
802 measures the number of bytes received by the vServer
275. In one embodiment, the bandwidth detector 802 mea-
sures the number of bytes received and transmitted by the
vServer 275. In yet another embodiment, the bandwidth
detector 802 measures the number of bytes transmitted by the
one or more services 270 to the vServer 275. In other embodi-
ments, the bandwidth detector 802 measures the number of
bytes transmitted by one or more clients 102 to the vServer
275. In other embodiments, the bandwidth detector 802 mea-
sures the bandwidth 825 for a vServer 275 based on the
number of packets on a queue waiting to be transmitted. In
some embodiments, the bandwidth detector 802 determines
bandwidth usage via the transition of a queue of network
packets from empty to non-empty and vice-versa.

In one embodiment, the bandwidth detector 802 deter-
mines the measured bandwidth 825 in relation to round-trip
times between a virtual server and a service 270 or server 106.
In one embodiment, the bandwidth detector 802 measures
round-trip times between a virtual server and a client 106. In
another embodiment, the bandwidth detector 802 measures
round-trip times between a client and server via the virtual
server 275. The bandwidth detector 802 may use any type and
form of round-trip time computation or calculation to mea-
sure bandwidth 825. For example, the bandwidth detector 802
may use the following type of bandwidth measurement:

Bandwidth=Factor*MTU/(Round Trip Times*sqrt
(Packet Loss)), where the factor may be for
example 1.3

Asillustrated by the above equation, bandwidth may be deter-
mined based on packet loss, round trip times and/or packet
size adjusted by a predetermined factor. Although a measure-
ment of bandwidth using the above equation is described,
other derivatives of this request using any combination of
factors, maximum transmission unit (MTU), round trip times
and packet loss may be used.

The bandwidth threshold 820 for a vServer 275 may be
specified as a number, such as a real or integer. In one embodi-
ment, the bandwidth threshold 820 may be expressed in units
of number of bytes per a unit of time. In some embodiments,
the bandwidth threshold 820 may be specified as a percent-
age. For example, the bandwidth threshold 820 may represent
a percentage of bandwidth used by the vServer 275. In
another example, the bandwidth threshold 820 may represent
a percentage of bandwidth available to the vServer 275.

In some embodiments, the bandwidth threshold 820 may
indicate a direction for measuring the bandwidth 825 of a
vServer 275. In one embodiment, the bandwidth threshold
820 identified the measurement is bi-directional. For
example, the bandwidth threshold 820 may indicate to mea-
sure bandwidth 825 of bytes transmitted by the vServer 275 to
the service and received from the service. In another example,
the bandwidth threshold 820 may indicate to measure band-
width 825 of the number of bytes sent from a client to the
service via the vServer 275 and sent from the server to the
client via the vServer 275. In other embodiments, the band-
width threshold 820 may indicate to measure bandwidth 825
in one direction, such as any of the following directions: from
the vServer to the service, from the service to the vServer,
from the vServer to the client.

As discussed above in connection with FIG. 8A, the con-
nection management mechanism 610, also referred to as a
connection manager or a virtual server switch, comprises
software, hardware, or any combination of software and hard-
ware having logic, functions or operations for receiving and

US 9,098,335 B2

59

managing connection requests and communications from one
or more clients 102A-102N. In one embodiment, the connec-
tion management mechanism 610 receives or intercepts trans-
port layer connection requests and communications between
the clients 102A-102N and one or more services 270A-270N.
The connection management mechanism 610 may include an
application, program, service, process, task, thread or any
type and form of executable instructions. In response to
receiving a client communication, the connection manage-
ment mechanism 610 identifies, determines or selects a
vServer 275 for processing a received communication from a
client 102.

The connection manager 610 may operate responsive to the
load monitor 420 and/or the bandwidth detector 802. The load
monitor 420 may monitor the measured bandwidth 825. In
some embodiments, the load monitor 420 and/or bandwidth
detector 802 measures the bandwidth on a predetermined
frequency. In one embodiment, the load monitor 420 and/or
bandwidth detector 802 measures the bandwidth responsive
to any events, such as receipt of a network packet. In other
embodiments, the load monitor 420 and/or bandwidth detec-
tor 802 may determine whether or not if the measured band-
width 825 is greater than the bandwidth threshold 820.

If the connection manager 610 determines from the load
monitor 420 and/or bandwidth detector 802 that the measured
bandwidth 825 of a first vServer 275A exceeds the bandwidth
threshold 820, the connection manager 610 directs client
requests for the services managed by the first vServer 275A to
a second vServer 275n. The second vServer 275z may be
configured or established as backup server to the first vServer
275A. For example, the first vServer 275 A may be designated
a primary vServer 275A and the second vServer 275N as
backup vServer 275N. In another embodiment, the second
vServer 275N may be another virtual server—primary,
redundant, or otherwise—for managing the services 270A-
270N. In yet another embodiment, the second vServer 275N
is configures or designated as the spillover virtual server for
the first vServer 275A. In some cases, the second vServer
275N is established upon determining the first vServer
275275A exceeds the bandwidth threshold 820. In other
cases, the vServer 275N is already operating or executing on
the appliance 200.

In some embodiments, the connection manager 270 directs
new client connection requests to the second vServer 275. In
one embodiment, if the request is from a connection already
established with the first vServer 275A, the connection man-
ager 610 may direct the request to the first vServer 275A even
if the bandwidth threshold 820 is exceeded. This may be
referred to as connection or session persistence. In another
embodiment, the connection manager 610 directs any client
requests to the second vServer 275, for example, even a
request of a previously established connection.

In one embodiment, the connection manager 610 directs
client requests to the second vServer 275N while the first
vServer 275 has a measured bandwidth 825 greater than the
bandwidth threshold 820. In another embodiment, the con-
nection manager 610 directs clients requests back to the first
vServer upon determining that the measured bandwidth 825
of the first vServer 275 has fallen within the bandwidth
threshold 820. In some embodiment, the connection manager
610 determines which of the first vServer 275A and the sec-
ond vServer 275N has the lowest bandwidth usage or is the
least nearest to the corresponding bandwidth threshold 820
and directs the client requests to the determined vServer. In
other embodiments and in the case of multiple vServers
275A-275N exceeding a bandwidth threshold 820, the con-
nection manager 610 determines which vServer 275A-275N

10

15

20

25

30

35

40

45

50

55

60

65

60

exceeds its corresponding threshold 820 the least and directs
the client requests to the determined vServer.

In some embodiments, the appliance 200 via a load moni-
tor 420 and/or bandwidth detector 802 measures and moni-
tors the bandwidth of the second virtual server 275N. The
second vServer 275N may have the same bandwidth thresh-
old 820 or a different bandwidth threshold 820 as the first
vServer 275A. If the connection manager 610 determines
from the load monitor 420 and/or bandwidth detector 802 that
the measured bandwidth 825N of the second vServer 275N
exceeds the bandwidth threshold 820, the connection man-
ager 610 directs client requests for the services managed by
the second vServer 275A to another vServer 275N, such as
the first vServer 275A or a third vServer 275B. The second
vServer 275N may have a third vServer 275B designated as
backup virtual server or a spillover virtual server. The band-
width threshold management techniques described herein
may be used for a chain or plurality of virtual servers and
spillover virtual servers, each with a bandwidth threshold and
designated backup or spillover virtual server.

The appliance via the connection manager directs client
requests to the primary vServer 275 or any backup or spillover
vServer 275 based on measured bandwidth 825 in view of the
established bandwidth thresholds 820. The appliance 200
may dynamically adjust any bandwidth threshold 820 for any
vServer 275 based on any performance or operational char-
acteristics of the appliance, vServer, bandwidth, network con-
nection, client or server. For example, the load monitor and/or
bandwidth detector may measure the bandwidth of the
vServer or the network connection based on round trip times,
packet loss and/or MTU. In one embodiment, the appliance
may determine that the established bandwidth threshold 820
is set relatively low in comparison to the measured bandwidth
825 and determines to dynamically increase the bandwidth
threshold 820. For example, the appliance may adjust to the
bandwidth threshold 820 within a certain percentage or
threshold of the measured bandwidth. In another embodi-
ment, the appliance may determine that the established band-
width threshold 820 is set relatively high in comparison to the
measured bandwidth 825 and determines to dynamically
decrease the bandwidth threshold 820.

In one case, the appliance 200 dynamically sets or estab-
lishes a bandwidth threshold 820 by measuring bandwidth
825 of a vServer 275 for a predetermined time period. For
example, upon startup of a vServer 275, the bandwidth detec-
tor 802 may measure bandwidth for a predetermined or con-
figured time period, and then based on an average, peak or
range of bandwidth measurements set the bandwidth thresh-
old 820. In yet other examples, the appliance 200 may
dynamically adjust a bandwidth threshold 820 based on run-
ning additional vServers 275 or stopping, shutting down or
other removing a vServer 275. In another case, the appliance
200 may dynamically adjust a bandwidth threshold 820 based
on adding or removing services 270A-270» managed by a
vServer 275. In still other embodiments, the appliance 200
may dynamically adjust the bandwidth threshold 820 of a
vServer 275 based on information and feedback from a moni-
toring agent 197 and/or monitoring service 198. In still other
embodiments, the appliance 200 may dynamically adjust
bandwidth thresholds 820 based on one or more policies of a
policy engine 195.

Insome embodiment, the appliance 200 excludes avServer
275 from a load computation or determination, or otherwise a
load balancing decision if the bandwidth used 825 by the
vServer 275 exceeds the bandwidth threshold 820. In these
embodiments, this may be done so that the other vServer
275A-275N which carry the load for the excluded vServer

US 9,098,335 B2

61

275 do not also become overloaded. In other embodiments,
the appliance 200 adjusts a weight used for the vServer 275
upon detecting the vServer’s bandwidth 825 exceeds the
bandwidth threshold 820. For example, the weight of the
vServer 275 may be adjusted to minimize the impact to the
other vServer 275A-275N for not having the vServer 275
available to also service requests.

Referring now to FIG. 8B, an embodiment of steps of a
method for practicing dynamic virtual server spillover man-
agement based on bandwidth is depicted. In brief overview, at
step 805, the appliance establishes a first virtual server 275A
which directs requests from a plurality of clients to a plurality
of services. At step 810, the appliance establishes a band-
width threshold for the first virtual server. At step 815, the
appliance monitors a status for each of the plurality of ser-
vices. At step 820, the appliance measures and monitors the
bandwidth 825 used by the first vServer 275. At step 825, the
appliance receives a client request. At step 830, the appliance
determines whether or not the bandwidth threshold for the
first vServer 275A has been exceeded. If not, at step 835, the
appliance directs the client request to the first vServer 275A.
If the threshold has been exceeded, the appliance at step 840
determines whether or not to establish or use a second vServer
275N or provide a redirect URL to the client 102. In one case,
at step 845, the client is redirected to the service and bypasses
the first vServer 275A. At step 850, the appliance may deter-
mine if the client is persistent with the first vServer 275A or
the second vServer 275N. If the client is sticky to the first
vServer 275A, the appliance may direct the request to the first
vServer 275A at step 835. Otherwise, the appliance spills
over to an established second vServer 275N at step 855. The
method may continue at step 810 to monitor and perform
spillover management for the second vServer 275N.

In further detail, at step 805, an appliance establishes a first
virtual server 275 which manages connections and direct
requests from a plurality of clients to a first plurality of ser-
vices 270. In one embodiment, the appliance may establish
the virtual server upon startup of the appliance. In another
embodiment, the appliance may establish the virtual server in
response to a previously established virtual server exceeding
maximum connection threshold. In one embodiment, the
appliance may establish a plurality of virtual servers. In some
embodiments, a user configures and starts the first vServer
275. In other embodiments, the first vServer is configured,
established or designed by the appliance or auser as a primary
virtual server.

At step 810, the appliance may establish or otherwise pro-
vide a bandwidth threshold 820 for the first vServer 275. In
one embodiment, the bandwidth threshold 820 may be ini-
tially configured by a user or administrator of the appliance.
In another embodiment, the bandwidth threshold 820 may be
initially determined by the appliance by monitoring the band-
width used by the vServer 275 or by polling one or more
services 270. In some embodiments, the appliance 200 may
use a default or predetermined bandwidth threshold 820. For
example, the appliance may use a predetermined bandwidth
threshold 820 associated with or based on the type of service
270.

At step 815, the appliance may monitor a status for each of
the services 270 using any means. In one embodiment, the
appliance may use a monitoring agent 420. In another
embodiment, the appliance may use a plurality of monitoring
agents 420. In one embodiment, the appliance may monitor
the status for each of the services at predetermined time
intervals, for example once every 0.01, 0.1, 0.2, 0.5, or 1

25

40

45

50

55

60

62

seconds. In another embodiment, the appliance may monitor
the status for each of the services 270 asynchronously or
based on any events.

Atstep 820, the appliance measures and monitors the band-
width used in association with the first vServer 275A. The
load monitor 420 and/or bandwidth detector 802 may com-
pute, determine or otherwise make bandwidth measurements
925. In one embodiment, the appliance determines the mea-
sured bandwidth 825 of a vServer 275 on a predetermined
frequency. In another embodiment, the appliance determines
the measured bandwidth 825 of a vServer 275 triggered by an
event. In one case, the appliance determines the measured
bandwidth 825 of a vServer 275 at the request of a user. In
some embodiments, the appliance 200 measures bandwidth
based on a number of bytes transferred to and/or from a
vServer 275. In other embodiments, the appliance 200 mea-
sures bandwidth based on round trip times of communication
to and/or from a vServer 275. In some embodiments, the
appliance may dynamically adjust the bandwidth threshold
820 based on bandwidth measurements. In other embodi-
ments, the appliance may dynamically adjust the bandwidth
threshold 820 based on performance and/or operational char-
acteristics of the appliance, the vServer 275, the network
connection, and/or the service 270.

At step 825, the appliance may receive a client request. In
one embodiment, the appliance intercepts the client request as
atransparent interception device. In another embodiment, the
client transmits the request to the appliance as a proxy. In
some embodiments, the appliance receives a client request to
open or establish a transport layer connection. In other
embodiments, the appliances receive a client request to
access a service via a previously established transport layer
connection. The transport layer request may be received from
any computing device including a client 102, server 106, or a
second appliance 200. In one embodiment, the request may
identify a type of service 270. For example, the transport layer
request may comprise a request for HT'TP service. Or, for
example, the transport layer request may comprise a request
for UDP service.

At step 830 the appliance may determine whether the mea-
sured bandwidth 825 for a vServer 275 has reached or
exceeded the bandwidth threshold 820. The appliance may
compare the current measured bandwidth 825 for the first
virtual server with the current value of the bandwidth thresh-
old 820 for the first virtual server. In other embodiments, the
load monitor 420 and/or bandwidth detector 802 may have
already determined the bandwidth threshold 925 for the
vServer 275 has been reached or exceeded. In another
embodiment, the appliance 200 may determine if the band-
width threshold 825 has been reached or exceeded responsive
to receiving the client request. If the bandwidth threshold 820
of'the first virtual server has not been exceeded, the appliance
may provide the client request to the first virtual server at step
835.

Ifthe appliance determines the bandwidth threshold 820 of
the first virtual server has been exceeded, the appliance may
establish, use or otherwise spillover to a second virtual server
275N at step 840. In other embodiments, a second virtual
server 275N may already have been established prior to some
or any of'the steps shown. In another embodiment, the second
virtual server 275N may be established responsive to deter-
mining the bandwidth threshold 820 has been exceeded. The
second virtual server may provide access to a second plurality
of services 270. In one embodiment, one or more of the
second plurality of services 270 may comprise the same type
of'service 270 as one or more of the first plurality of services.
The appliance may then establish and/or adjust a bandwidth

US 9,098,335 B2

63

threshold 820 for the second virtual server. The appliance
may provide the client request to the second virtual server 275
at step 855.

In other embodiments, if the bandwidth threshold 820 of
the first virtual server has been exceeded, the appliance may
redirect the client making the request to another resource. In
one embodiment, the appliance may transmit a URL to the
client comprising the address of a server 106 or service 270
such that the client may bypass the appliance 200 and access
the server 106 or service 270 directly. In one embodiment, the
appliance may transmit a URL to the client comprising the
address of a second appliance 200. In still another embodi-
ment, the appliance 200 may redirect the client request to a
second appliance.

At step 850, the appliance 200 may determine whether the
client making the request has a previously existing connec-
tion or session with either the first or a second virtual server.
In some embodiments, an appliance may assign a priority to
providing requests from a client to virtual servers that have
previously serviced or are currently servicing connections or
session from the client. For example, if a request is received
from a client, and the client has a currently existing connec-
tion with a first virtual server, the appliance 200 may provide
the request to the first virtual server even if the first virtual
server has reached or exceeded the bandwidth threshold. Or,
for example, if a client has a previous connection via a backup
virtual server, and the primary virtual server subsequently
falls below the bandwidth threshold 820, the appliance 200
may still provide a subsequent request from the client to the
backup virtual server. In one embodiment, a connection man-
agement mechanism 610, or other appliance component may
track previously established or current connections or session
so that incoming requests from a client can be provided to a
virtual server having previously serviced the connection or
session from the client.

At step 855, the appliance 200 may dynamically manage
virtual spillover based on bandwidth by directing or provid-
ing the client request to the spillover or second vServer 275N.
In some embodiments, the appliance determines the second
vServer 275 is busy, unavailable or has exceeded its band-
width threshold or another threshold. In response, the appli-
ance may redirect the client at step 840 or provide the client
request to a third vServer 275B or another appliance 200'. In
some embodiments, the appliance has a plurality of vServers
275A-275N managing the services 270 and determines which
vServer to direct the client request based on comparison of
each vServer’s measured bandwidth and/or bandwidth
threshold. In one case, the appliance provides the client
request to one of a plurality of backup or spillover vServers
based on the least measured bandwidth. In another case, the
appliance provides the client request to the vServer with the
greatest difference between the measured bandwidth and the
bandwidth threshold.

Although an embodiment of method 800 is generally
described above in regards to measuring and monitoring
bandwidth of a first vServer and spilling over to a second
vServer, any steps of the method may be performed for the
second vServer and a spillover server for the second vServer,
and for a third vServer, and so on. An embodiment of method
800 or any steps thereof may be practiced for a plurality of
virtual servers, such as a set of primary vServer managing the
same or different services. Another embodiment of method
800 or any steps thereof may be practiced for a chain of
spillover virtual servers, so that a second vServer spills over
into a third vServer based on bandwidth and so on.

Furthermore, any of the systems and method discussed
herein may be practiced in combination. For example, the

30

35

40

45

55

65

64

techniques of dynamic connection spillover management
described in conjunction with FIGS. 6 and 7 may be practiced
with the bandwidth based spillover management described in
conjunction with FIGS. 8 A and 8B. In some embodiment, the
appliance may establish, monitor and manage spillover of
virtual servers based on multiple thresholds. For example, the
appliance may use both connection based thresholds and
bandwidth based thresholds to determine to spillover a client
request from one virtual server to another. In one embodi-
ment, the appliance may spillover from one virtual server to
another virtual server when both thresholds are reached or
exceeded. In another embodiment, the appliance may spill-
over from one virtual server to another virtual server when
either of the thresholds are reached or exceeded.

In some embodiments, the techniques of bandwidth based
virtual server switching and spillover management described
above may be combined with the content switching function-
ality and policies of the appliance to provide bandwidth man-
agement of a virtual server on an object basis. The appliance
may be configured to have a set of one or more virtual servers
to manage requests and response of predetermined object
types. A first virtual server may be configured to provide
requests to a second virtual server if the request identifies an
object matching a pattern, such as a pattern of URL or file
extension. For example, the first virtual server may direct the
second virtual server to handle all image file requests with the
extension of * jpg, or *.gif. For these object types, the second
virtual server manages requests and response of a plurality of
services. The second virtual server may also be under band-
width management by the appliance and have a bandwidth
threshold. The appliance via one or more monitoring agents
monitor the second virtual server to determine if the band-
width used by the second virtual server in handling the
requests for these object types is exceeded. If the threshold is
exceeded, the appliance or first virtual server may spillover
handling of the requests of these object types to another
virtual server. Or in some cases, the appliance may provide a
redirect URL to the client or redirect the client’s request to
another appliance, a server or to the service.

Referring now to FIG. 9A, an embodiment of an appliance
200 for practicing a technique of object based bandwidth
switching and spillover management is depicted. In brief
overview, the appliance 200 establishes a first vServer 275A
to manage access by a plurality of clients 1024-1027 to one or
more virtual servers 275A'-275N'which in turn manager
access to one or more services 270A-270N of a first set of
servers 106 A-106N. The appliance 200 includes a connection
management mechanism 610 for managing and balancing
requests from clients 102a-102% to the vServers. A first
vServer 275A may be configured via a policy engine 935
and/or via content switching 284 to direct requests from cli-
ents to one or more vServer 275A'-275N' based on the type of
object 902A or objects identified via the request. In some
cases, a policy of a policy engine provides logic or rules to
determine which requests are forwarded by the first vServer
275 to one of the plurality of vServer 275A'-275N'. For
example, the first vServer 275 may direct all requests match-
ing a pattern for a URL may be transmitted to a second
vServer 275A. Another vServer 275N may be configured to
direct client request matching another policy or object type
902N to a second set of one or more vServers 275A"-275N".

The appliance 200 establishes for any of the object han-
dling vServers 275A'-275N a bandwidth threshold 820A.
This bandwidth threshold may be established by the appli-
ance or specified by the user. Via monitoring agents 420A-
420N, the appliance monitors the operational status of each of
the object handling vServers 275A'275N" and corresponding

US 9,098,335 B2

65

services 270A-270N. For example, as previously discussed
above, the monitoring agents 420 may use a bandwidth detec-
tor 802 to determine or measure bandwidth usage by a virtual
server. If the measured bandwidth for a second vServer 275A'
is determined to have reached or exceeded the bandwidth
threshold 820A, the first virtual server 275A and/or connec-
tion manager 610 of the appliance may determine to direct
client requests to a spillover vServer 275B which may handle
requests for the same object type as the second vServer 275A.
For example, a user may configure a bandwidth threshold of
5 Mbytes per second for graphic image object types, such as
files with a *.jpg extension. If the bandwidth detector 820
determines the measured bandwidth 825 of the vServer 275A’
exceeds 5 Mbytes a second, the appliance 200 may switch or
spillover client requests to another vServer 275N'.

In some embodiments, a virtual server 275 may be
designed, constructed or configured to manage other virtual
servers. In one embodiment, a virtual server 275A-275N may
be designed, constructed or configured to direct requests to
other virtual servers based on any type and form of object
type. In some embodiments, a vServer 275A-275N comprises
any of the functionality and capabilities of the content switch-
ing 284 functionality as described above in FIG. 2B. In one
embodiment, the vServer 275A-275N includes logic, func-
tions, rules or operations to identify an object or objects from
any content of a request or network packet(s) thereof. In some
embodiments, the vServer 275A-275N identifies type of
objects from URLs, or portions thereof. For example, the
vServer 275A-275N may identify an object type from a URL
of request by matching a predetermined URL pattern to the
request’s URL. In other embodiments, the vServer 275A-
275N identifies types of objects from any file references, file
names, file types or file extensions in the content of the
request. In another embodiment, the vServer 275A-275N
identifies types of objects from a request via any headers of
any protocol layer of the requests, such as HTTP headers in an
application layer protocol portion of the request.

In still other embodiments, the vServer 275A-275N iden-
tifies types of objects from any portion of any network
packet(s) for a request. In one embodiment, the vServer
275A-275N associates an internet protocol address and/or
port with an object type. In these embodiments, the vServer
275A-1275N identifies the object type from the source and/or
destination of the network packet. In some embodiments, the
vServer 275A-275N identifies or associates an object type
from any header fields of any protocol layer of a network
packet. In other embodiments, the vServer 275A-275N iden-
tifies or associates an object type from any option field of a
header, such as TCP or IP option field. In another embodi-
ment, the vServer 275A-275N identifies an object type from
any information encoded in a header or payload of a packet. In
one embodiment, the vServer 275A-275N identifies an object
type by a type of protocol used for the request.

In other embodiments, a vServer 275A is designed to deter-
mine which requests to forward or provide to other virtual
servers responsive to a policy engine 238. In some embodi-
ments, the policy engine 238 includes one or more policies
1003 which identify rules for which the vServer 275A-275N
may direct client requests to one of the other vServers 275A-
275N'. In one embodiment, the policy 903 identifies to a
vServer 275A-275N any portion of content of a network
packet or of a request to associate with an object type or
otherwise direct to a vServer 275A'-275N. In another
embodiment, the policy 903 identifies to a vServer 275A-
275N any portion of content of a network packet or of a
request to direct to a predetermined set of one or more ser-
vices 270. In other embodiments, the policy 903 provides

10

15

20

25

30

35

40

45

50

55

60

65

66

rules for matching any patterns of the rule to requests to
associate with or identify an object type. For example, the
policy 903 may identify a string pattern for a portion of a
URL. In another example, the policy 903 may specify a
pattern or rule for name of a file, or portion thereof. In further
examples, the policy 903 may specity a pattern or rule for a
file extensions. In still other cases, the policy 903 may specify
a web page name with an object type. In another case, the
policy 903 may specify a source and/or destination IP address
and/or port with an object type. In one case, the policy 902
may specify a type of protocol to associate or identify an
object type. The policy engine 238 and/or polices 1003 may
specify any portion of a network packet, such as any data
element of a header or payload, to use to identify an object
type or otherwise indicate to a vServer 275A-275N to provide
requests to other vServer 275A"275N' or services 270.

In view of the various ways to identify types of objects, an
object type 902 may comprise any type and form of catego-
rization, classification, grouping or identification. An object
type may be an identification of an object as a certain type or
belong to a group or classification. Any data or information
included in, referenced by or associated with a client request
may used to identify an object, or type thereof. An object type
may also be referred to or considered an object identifier. In
one embodiment, an object type 902A-902N may be based on
groups of one or more object types. In other embodiments, an
object type 902A-1002N may be granular and based on a
specific name, reference or instance of an object. In some
embodiments, the object type comprises types of files by
name, content, or extension. For example, a first object type
902 A may includes objects having a first file name extension,
and a second object type 902N may include objects having a
second file name extension. In another example, an object
type 902A may include a group of objects, such as any object
having one of a plurality of file name extensions. In yet further
examples, the object type 902 may identify any type and form
of' media, such as voice, audio, data or any combination.

In other embodiments, an object type 902 is based on a
pattern for a URL. In another embodiment, an object type 902
is based on a destination portion of a URL. In some embodi-
ments, the object type 902 may be based on a domain or server
identified by a URL. In one embodiment, the object type 902
may include URLs thatidentify a specified web page. In some
embodiments, an object type 902 may include a set or group
of one or more URL patterns, or portions of URLs. In yet
other embodiments, an object type 902 is based on a source
and/or destination of the request. In one embodiment, the
object type 902 is based on the type of protocol used by the
request. In other embodiments, the object type 902 is based on
any information of a header or payload of a packet(s) for the
request.

In still other embodiments, a user may configure or identify
object types 902A-1002N in any desired combination,
arrangement or manner. In one embodiment, a user may
specify an object type 902 to be any URL pattern. In another
embodiment, a user may specify an object type 902 to be any
pattern for a resource or file identified in the request. In some
embodiments, the user may specify any IP address and/or port
to be used to identify an object type. In other embodiments,
the user may specify any portion of a network packet, such as
any header field or data in a payload, as identifying an object
type 902. In still further embodiments, a user may specify any
matching portion of a request to be associated with an object
type.

As illustrated in FIG. 9A, multiple vServers 275A-N may
be configured, designed or constructed to direct client
requests based on a multiple object types 902A-1002N to a

US 9,098,335 B2

67

plurality of vServers 275A'-275N" and 275A"-275N". A first
vServer 275A may be configured to forward requests corre-
sponding to a first object type to one or more vServers 275A-
275N, which manage one or more services 270A-270N. A
second vServer 275N may be configured to forward requests
corresponding to a second object type 902N to a second set of
one or more vServers 275A'-275N', which manage one or
more services 270A'-270N'. For example, the first vServer
275A may direct requests corresponding to graphical image
related object types to a second vServer 275A". The second
vServer 275N may direct requests corresponding to predeter-
mined URL patterns to a third vServer 275A". In some cases,
the second vServer 275N may direct request corresponding to
the object types handled by the first vServer 275A to the
second set of vServers 275A'-275N".

The appliance 200 may have a plurality of a first set of
vServers 275A-275N directing requests to a plurality of other
vServers 275A'-275N' and 275A"-275N" based on a multi-
tude of object types 902A-902N. Object types 902A-902N or
policies thereof may be configured by a user to have a wide
range of different types 902 from broad groupings to very
granular object identifiers. For example, a first vServer 275A
may directs requests corresponding to a more broad classifi-
cation of object types 902, that are identifies as an HTTP
object. In another example, a second vServer 275N may
directs requests corresponding to a more narrow identifica-
tion of an object type, such a file by a specific name or a
specific URL, or portion of a URL.

Referring now to FIG. 9B, an embodiment of steps of a
method for practicing an object and bandwidth based virtual
spillover management and switching technique is depicted. In
brief overview, at step 905, the appliance establishes a first
virtual server 275A which directs requests from a plurality of
clients corresponding to an object type 902 to one or more
virtual servers 275A'275N, such as a second virtual server
275A'. At step 910, the appliance establishes a bandwidth
threshold for the second virtual server. At step 915, the appli-
ance monitors a status for each of the plurality of virtual
servers, and corresponding to services. At step 920, the appli-
ance measures and monitors the bandwidth 825 used by the
second vServer 275A'. At step 925, the appliance receives a
client request. At step 930, the appliance determines whether
or not the bandwidth threshold for the second vServer 275A’
has been exceeded. If not, at step 935, the appliance directs
the client request to the second vServer 275A’. If the threshold
has been exceeded, the appliance at step 940 determines
whether or not to establish or use a third vServer 275N' or
provide a redirect URL to the client 102. In one case, at step
945, the client is redirected to the service and bypasses the
second vServer 275A'. At step 950, the appliance may deter-
mine if the client is persistent with the second vServer 275A".
Ifthe client is sticky or persistent to the second vServer 275A,
the appliance may direct the request to the second vServer
275A" at step 935. Otherwise, the appliance spills over to an
established third vServer 275N at step 955. The method may
continue at step 910 to monitor and perform object based
spillover management for the third vServer 275N.

In further detail, at step 905, an appliance establishes a first
virtual server 275A which manages connections and direct
requests from a plurality of clients to a first set of one or more
vServers 275A'-275N'. The first set of one or more vServers
275A'-275N' may manage, such as load balance, one or more
services 270. The first vServer 275A may be configured to
direct request identifying a first object type 902A to a first set
of one or more vServers 275A'-275N', such as a second
vServer 275A'". In some embodiments, the first vServer 275A
determines or identifies object types from a request respon-

15

20

25

40

45

55

68

sive to one or more policies 1003 of a policy engine 238. In
another embodiment, the first vServer 275N determines
which vServer 275A'-275N' to direct the request responsive
to a policy 903 and/or the policy engine 238. In one embodi-
ment, the appliance may establish a plurality of virtual servers
275A-275N, each vServer 275A-275N direct client requests
based on a different object type or the same object type.

At step 910, the appliance may establish or otherwise pro-
vide a bandwidth threshold 820 for any of the object handling
vServers, such as the second vServer 275A". In one embodi-
ment, the bandwidth threshold 820 may be initially config-
ured by a user or administrator of the appliance. In another
embodiment, the bandwidth threshold 820 may be initially
determined by the appliance by monitoring the bandwidth
used by the vServer 275 or by polling one or more services
270. In some embodiments, the appliance 200 may use a
default or predetermined bandwidth threshold 820. For
example, the appliance may use a predetermined bandwidth
threshold 820 associated with or based on the type of service
270. In other embodiments, the bandwidth thresholds 920
may be established by the appliance or user based on the
object type. In one case, a vServer 275A" may be configured
to have a bandwidth threshold 820A for a first object type 902
and another vServer 275N' may be configured with a band-
width threshold 820N having a different threshold value than
bandwidth threshold 820A. For example, a vServer 275A’
processing requests for media content, such as video, audio
may be designated with a larger bandwidth threshold 820A
than a vServer 275B' handlings requests for smaller files or
web pages.

At step 915, the appliance may monitor a status of any of
the vServers and any vServers or services 270 under manage-
ment. In one embodiment, the appliance may use a monitor-
ing agent 420. In another embodiment, the appliance may use
a plurality of monitoring agents 420A-420N. In one embodi-
ment, the appliance may monitor the status for each or any of
the vServers 275A'-275N' at predetermined time intervals, for
example once every 0.01, 0.1, 0.2, 0.5, or 1 seconds. In
another embodiment, the appliance may monitor the status
for each or any of the vServers 275A'-275N" asynchronously
or based on any events.

Atstep 920, the appliance measures and monitors the band-
width used by any of the vServers 275A'-275N' receiving
client communications directed from the first vServer 275A.
The load monitor 420 and/or bandwidth detector 802 may
compute, determine or otherwise make bandwidth measure-
ments 925. In one embodiment, the appliance determines the
measured bandwidth 825 of a vServer 275 on a predetermined
frequency. In another embodiment, the appliance determines
the measured bandwidth 825 of a vServer 275 triggered by an
event. In one case, the appliance determines the measured
bandwidth 825 of a vServer 275 at the request of a user. In
some embodiments, the appliance 200 measures bandwidth
based on a number of bytes transferred to and/or from a
vServer 275. In other embodiments, the appliance 200 mea-
sures bandwidth based on round trip times of communication
to and/or from a vServer 275. In some embodiments, the
appliance may dynamically adjust the bandwidth threshold
820 based on bandwidth measurements. In other embodi-
ments, the appliance may dynamically adjust the bandwidth
threshold 820 based on performance and/or operational char-
acteristics of the appliance, the vServer 275, the network
connection, and/or the service 270.

At step 925, the appliance may receive a client request. In
some embodiments, the client request is for one or more
objects having an object type 902. In one embodiment, the
client request includes a URL matching, identifying, associ-

US 9,098,335 B2

69

ated with or corresponding to an object type 902. In another
embodiment, the client request includes a file name, refer-
ence, type or extension identifying or associated with an
object type 902. In one embodiment, the appliance intercepts
the client request as a transparent interception device. In
another embodiment, the client transmits the request to the
appliance as a proxy. In other embodiments, the appliances
receives a client request to access a service via a previously
established transport layer connection. The transport layer
request may be received from any computing device includ-
ing a client 102, server 106, or a second appliance 200. In one
embodiment, the request may identify a type of service 270,
which may be associated with or other identify an object type
902. In yet another embodiment, the appliance 200 applies a
policy 903 to any portion or content the client request to
identify or determine the object type 902.

In other embodiments, the client request identifies a plu-
rality of object types 902A-902N. In these embodiments, the
first vServer 275A directing traffic to the other vServers
275A'-275N" may split the request up according to each of the
plurality of object types 902A-902N. For example, the first
vServer 275A may directs a first portion of the request cor-
responding to a first object type to a second vServer 275A!,
and a second portion of the request corresponding to a second
object type to a third vServer 275N". In another example, the
first vServer 275A directs a first portion of the request iden-
tifying a first object type 902A to vServer 275A' while a
second vServer 275B directs a second portion of the request
identifying a second object type 902N to another vServer
275N". In some embodiments, the first vServer 275A may
direct a client request having a plurality of object types 902 A-
902N to a single second vServer 275A'. The handling of
multiple object types 902A-902N may be specified by a
policy of which object type 902A-902N has priority in
switching decisions for virtual servers.

At step 930 the appliance may determine whether the mea-
sured bandwidth 825 for an object handling vServer 275A'-
275N has reached or exceeded the corresponding bandwidth
threshold 820A-920N. For example, the appliance may com-
pare the current measured bandwidth 825A for the second
first virtual server 275A" handling a first object type 902 with
the current value of the bandwidth threshold 820A for the
second virtual server. In other embodiments, the load monitor
420 and/or bandwidth detector 802 may have already deter-
mined the bandwidth threshold 925 for the second vServer
275A" has been reached or exceeded. In another embodiment,
the appliance 200 may determine if the bandwidth threshold
925 has been reached or exceeded responsive to receiving the
client request. If the bandwidth threshold 820 of the second
vServer 275A!, the appliance may provide the client request
to the second virtual server at step 935.

If'the appliance determines the bandwidth threshold 820 of
the second virtual server 275A" has been exceeded, the appli-
ance may establish, use or otherwise spillover to a third vir-
tual server 275N at step 940. The third virtual server 275N'
may handle client requests corresponding to the object type of
the second virtual server 275A’. In other embodiments, a third
virtual server 275N' may already have been established prior
to some or any of the steps shown. In another embodiment, the
third virtual server 275N may be established responsive to
determining the bandwidth threshold 820 has been exceeded.
The second virtual server may provide access to the object
type 920 via a second plurality of services 270. In one
embodiment, one or more of the second plurality of services
270 may comprise the same type of service 270 as one or
more of the first plurality of services. The appliance may then
establish and/or adjust a bandwidth threshold 820 for the third

20

30

35

40

45

55

70

virtual server. The appliance may provide the client request to
the second virtual server 275N' at step 955.

In other embodiments, if the bandwidth threshold 820 of
the second virtual server 275A" has been exceeded, the appli-
ance may redirect the client making the request to another
resource. In one embodiment, the appliance may transmit a
URL to the client comprising the address of a server 106 or
service 270 such that the client may bypass the appliance 200
and access the server 106 or service 270 directly. In one
embodiment, the appliance may transmit a URL to the client
comprising the address of a second appliance 200. In still
another embodiment, the appliance 200 may redirect the cli-
ent request to a second appliance.

At step 950, the appliance 200 may determine whether the
client making the request has a previously existing connec-
tion or session with either the first or a second virtual server.
In some embodiments, an appliance may assign a priority to
providing requests from a client to virtual servers that have
previously serviced or are currently servicing connections or
session from the client. For example, if a request is received
from a client, and the client has a currently existing connec-
tion with a third virtual server 275N', the appliance 200 may
provide the request to the third virtual server even if the
second virtual server 275A' has reached or exceeded the
bandwidth threshold. Or, for example, if a client has a previ-
ous connection via a backup virtual server, and the primary
virtual server subsequently falls below the bandwidth thresh-
old 820, the appliance 200 may still provide a subsequent
request from the client to the backup virtual server. In one
embodiment, a connection management mechanism 610, or
other appliance component may track previously established
or current connections or session so that incoming requests
from a client can be provided to a virtual server having pre-
viously serviced the connection or session from the client.

At step 955, the appliance 200 may dynamically manage
virtual spillover based on bandwidth and object types by
directing or providing the client request to the spillover or
third vServer 275N'. In some embodiments, the appliance
determines the third vServer 275N' handling a first object
type is busy, unavailable or has exceeded its bandwidth
threshold or another threshold. In response, the appliance
may redirect the client at step 940 or provide the client request
to a fourth vServer 275B' handling the first object type or
another appliance 200'. In some embodiments, the appliance
has a plurality of vServers 275A'-275N' handling objects
corresponding to an object type and determines which
vServer to direct the client request based on comparison of
each vServer’s measured bandwidth and/or bandwidth
threshold. In one case, the appliance provides the client
request to one of a plurality of backup or spillover vServers
configured to handle the object type based on the least mea-
sured bandwidth. In another case, the appliance provides the
client request to the vServer handling the object type with the
greatest difference between the measured bandwidth and the
bandwidth threshold.

Although an embodiment of method 900 is generally
described above in regards to measuring and monitoring
bandwidth of a second vServer managed by a first vServer
and spilling over to a third or fourth vServer, any steps of the
method may be performed for the third spillover vServer,
fourth spillover vServer and so on. An embodiment of method
1000 or any steps thereof may be practiced for a plurality of
virtual servers managing a plurality of other virtual servers,
each handling a plurality of object types. Another embodi-
ment of the method or any steps thereof may be practiced for
a chain of spillover virtual servers, so that a second vServer

US 9,098,335 B2

71

spills over into a third vServer based on bandwidth and object
types, and the third vServer into a fourth vServer and so on.
Furthermore, any of the systems and method discussed
herein may be practiced in combination. For example, the
techniques of dynamic connection spillover management
described in conjunction with FIGS. 6 and 9 may be practiced
with the object based bandwidth based spillover management
described in conjunction with FIGS. 9A and 9B. In some
embodiment, the appliance may establish, monitor and man-
age spillover of virtual servers based on multiple thresholds.
For example, the appliance may use both connection based
thresholds and bandwidth based thresholds to determine to
spillover from one virtual server to another for handling a
client request identifying an object type. In one embodiment,
the appliance may spillover from one virtual server to another
virtual server when both thresholds are reached or exceeded
and for a certain object type. For example, for processing
client requests of a first object type, the second vServer man-
aged by the first vServer may have a connection capacity
threshold and a bandwidth threshold. Another object han-
dling vServer may have different connection capacity thresh-
old and/or bandwidth threshold. In another embodiment, the
appliance may spillover from one virtual server to another
virtual server for handling objects of a certain type when
either of the thresholds are reached or exceeded.
G. Systems and Methods for Health Based Spillover
Referring now to FIGS. 10A and 10B, systems and meth-
ods for managing spillover from a first virtual server to a
second virtual server based on health are depicted. The appli-
ance may establish or user configure a health threshold for
one or more virtual servers managing one or more services.
The health threshold may be established or identified as a
percentage. The appliance monitors the health of the services
used by a virtual server. In response to detecting the health
falling below the established health threshold, the appliance
dynamically directs client requests to another virtual server.
The health threshold may be adjusted to take into account
capacity, response times, virtual server performance or per-
formance ofthe server. The appliance manages virtual servers
based on health to maintain performance ofthe virtual servers
and the services managed by the virtual servers at a desired
level or within a predetermined performance range.
Referring now to FIG. 10A, an embodiment of an appli-
ance or intermediary for providing virtual server spillover
management based on health is depicted. In brief overview,
the appliance 200 establishes a first vServer 275A to manage
access by a plurality of clients 102a-1027 to one or more
services 270A-270N of a first set of servers 106 A-106N. The
appliance 200 includes a connection management mecha-
nism 610 or connection manager for managing and balancing
requests from clients 1024-1027 to one or more set of services
270A-270N via one or more vServers 275A-275N. The appli-
ance 200 establishes for a first vServer 275A a health thresh-
0ld 1020 A, which may be specified by a user. The appliance
may establish a second vServer 275N with a second health
threshold 1020B. Via monitoring agents 420A-420N, the
appliance monitors the operational status of each of the ser-
vices 270A-270N. The monitoring agents 420 may include a
health monitor 1002 for measuring the health used by a virtual
server 275. The health monitor 1002 may at predetermined
frequencies or time frames determine a measured health
1025A for a first vServer 275A. The health monitor 1002 may
also determine a measured health 1025B for the second
vServer 275N.
If the measured health for the first vServer 275A is deter-
mined to have reached or fallen below the health threshold
1020A, the connection manager 610 of the appliance may

10

15

20

25

30

35

40

45

50

55

60

65

72

determine to direct client requests to the second vServer
275N. For example, a user may configure a health threshold at
50%. If the health detector 1020 determines the measured
health 1025 of the vServer 275 falls below 50%, the appliance
200 via the connection management mechanism 610 may
switch client requests to the second vServer 275N.

Each of the vServers 275A-275z may identify or be con-
figured to identify the one or more services the vServer is
managing. In some embodiments services may be organized
or configured into a group referred to as a service group or
group of services. In some of these embodiments, a com-
mand, instruction, policy or configuration may be applied to
each service in a service group by referencing the service
group via the command, instruction, policy or configuration.
In some embodiments, a service or a service group may be
enabled or disabled by an administrator of the appliance. In
other embodiments, a service or service group may be
enabled or disabled by any component of the appliance, such
as connection manager 610 or a monitoring agent 420. In
some embodiments, a service or service group may be
referred to or considered a member of the vServer. In some
embodiments, to have a service or service group be managed
by a vServer, the service or service group may be bound to the
vServer via any type and form of bind command or instruc-
tion. In some of these embodiments, a service may be referred
to as bound to a vServer. In some embodiments, a service may
be enabled or disabled but not bound to the vServer. In other
embodiments, a service may be bound to a vServer but dis-
abled.

Any ofthe services 270A-270N' and/or service groups may
be assigned any type and form of weight 1070, such as any of
the weights described in conjunction with FIGS. 4A and/or
4B. The weight may be any type and form of numerical factor
identifying a relative degree of importance, influence, con-
sideration or value. In some embodiments, each service may
be assigned the same weight. In other embodiments, each
service may be assigned a different weight. In some embodi-
ments, some services are assigned the same weight while
other services are assigned different weights. In one embodi-
ment, a same or different weight may be assigned to any
service group. In some embodiments, the weight assigned to
a service group is assigned at the group level. For example,
the service group may be considered a single entity with the
assigned eight. In other embodiments the weight assigned to
a service group is assigned to each of the services of the
service group. For example, the services in the service group
may be treated as separate entities each with the same weight
assigned to the service group. In some embodiments, a sum of
the weights 770 assigned to a service and/or service group
may be equal to 100. In other embodiments, a sum of the
weights 770 assigned to a service and/or service group may be
any predetermined number greater than or less than 100.

In some embodiments, a service and/or service group may
be assigned a different weight based on state: up/down (ac-
tive/inactive), enabled/disabled, etc. In one embodiment, a
service may have a first weight for an up state. In some
embodiments, the service may have a second weight for a
down state. In some embodiments, a service and/or service
group may be assigned a different weight based on load. In
another embodiment, the a service and/or service group may
be assigned a progressively changing weight based on
changes in state and/or load.

The health 1025A-1025B, generally referred to as health
1025, may be defined as a percentage of weights of services
that are currently in an up state, sometimes referred to as
active, to the sum total of the weights of all enabled services,
such as those services that are either in an up or down state.

US 9,098,335 B2

73

The down state is sometimes referred to as inactive. From a
computational perspective, the health 1045 may be expressed
or represented in logic or executable form as:

Health of a virtualServer=[(activeWeight of virtu-
alServer)/totalWeight of virtualServer)]*100
where:

activeWeight of services for vServer 275=sum of weights
of'services and/or service groups that are (a) active and,
in some embodiments, also (b) enabled

totalWeight(virtual server)=sum of weights of services
and/or service groups of the vServer 275 that are
enabled.

The activeWeight parameter, input or value to the health
determination may comprise the addition or summation of
each of the weights assigned to each service and/or service
group that is identified as in a predetermined state. In one
embodiment, the predetermined state is up or active. The
activeWeight value may be set to a resulting total of the
addition or summation. In some embodiments, the service
and/or service group must be enabled and in the predeter-
mined state to be included in the addition or summation. In
some embodiments, the service and/or service group must be
bound and in the predetermined sate to be included in the
addition or summation.

The totalWeight parameter, input or value to the health
determination may comprise the addition or summation of
each of the weights assigned to each service and/or service
group that is assigned to the vServer. In some embodiments,
those service and/or service groups that are enabled are
included in the total Weight computation. In some embodi-
ments, those service and/or service groups that are bound to
the vServer are included in the totalWeight computation. in
some embodiments, those service and/or service groups that
either have an up or down state are included in the total Weight
computation The sum of weights of services and/or service
groups that are enabled may include all services that are either
identified as ‘UP’ or ‘DOWN’. In some embodiments, the
sum of weights of services and/or service groups that are
enabled may not includes those services which are marked
disabled or otherwise configured to be disabled.

In some embodiments, the health is expressed numerically.
In other embodiments, the health is expressed as text or string
format. In some embodiments, health is expressed as a per-
centage, in the form X %, XX %, XXX %, In some embodi-
ments, the range of health is from 0% to 100%. In some
embodiments, health may be expressed as a percentage with
any number of decimal places, such as X.X %, XX. XX % or
XXX XXX %. In other embodiments, health is expressed
without multiplying by a 100 in the above equation. In these
embodiments, health may be expressed as a percentage
greater than 100%. In other embodiments, the health may be
anumber. In some embodiments, health may be a ratio. In one
embodiment, health may be a fraction. In some embodiments,
health may be a decimal.

The health monitor 1002, sometimes referred to as a health
detector or detector, includes or provides logic, business
rules, functions or operations for determining the health of
one or more virtual servers 275. The health detector 1002 may
include software, hardware or any combination of software
and hardware. The health detector 1002 may comprise an
application, program, script, library, process, service, driver,
task, thread or any type and form of executable instructions.
In some embodiments, the health monitor is a monitoring
agent. In another embodiment, the health monitor is part of a
monitoring agent. In still another embodiment, the health
monitor may be part of the vServer. In yet another embodi-

10

20

25

30

40

45

55

74

ment, the health monitor may be a separate component of the
appliance in communication with any one or more of the
monitoring agent, vServer and/or connection manager.

In some embodiments, the health detector 1002 determines
or computes the health 1020. The health detector 1002 may
determine the health on a predetermined frequency. In some
embodiments, the health detector 1002 determines an average
health over any period of time In other embodiments, the
health detector 1002 measures the health 1025 for a vServer
275 based on the number of packets on a queue waiting to be
transmitted. In some embodiments, the health detector 1002
determines health upon the transition of a queue of network
packets from empty to non-empty and vice-versa. In some
embodiments, the health detector 1002 determines health
upon receipt of a client request. In some embodiments, the
health detector 1002 determines health upon receipt of a
server response.

The health detector 1002 may determine the health of a
vServer responsive to any one or more monitoring agents. For
example, in some embodiments, the health detector may
compute/recompute the health upon return of a status of a
service from a monitoring agent. In another embodiment, the
health detector may compute/recompute the health upon a
change in status of a service from a monitoring agent. In some
embodiments, the health detector may determine the health at
a configured or configurable predetermined frequency. In
some embodiments, the health detector may determine the
health at different times or different frequencies for each
vServer. In yet another embodiment, the health detector may
use different health computations among a plurality of vServ-
ers. For example, in some embodiments, the type and form of
the health computation may be configurable or specified by
policy.

In some embodiments, the health detector 1002 deter-
mines, computes or establishes the totalWeight of health a
first time and updates the totalWeight of services upon a
change in the enabled or disabled state of a service or service
group. In some embodiments, the health detector 1002 deter-
mines, computes or establishes the totalWeight of health a
first time and updates the totalWeight of services upon a
change in the weight of any of a service or service group. In
other embodiments, the health detector 1002 determines,
computes or establishes the totalWeight any type a health
determination or computation is made.

The health threshold 1020 for a vServer 275 may be speci-
fied as a number, such as a real or integer. In some embodi-
ments, the health threshold 1020 may be expressed as a per-
centage. In other embodiments, the health threshold 1020
may be expressed as a ratio or a decimal. For example, the
health threshold 1020 may represent a percentage of enabled
services active and used by the vServer 275. In another
example, the health threshold 1020 may represent a percent-
age of health available to the vServer 275. In some embodi-
ments, the health threshold may be expressed logically using
any type and form of expression, such as for example,
“health<20%".

In some embodiments, the health threshold 1020 may indi-
cate a relative percentage from a predetermined point. In one
embodiment, the health threshold 1020 identifies an amount
of change of the measured health. For example, the health
threshold 1020 may represent an amount of decrease in per-
centage of health to be considered triggering the threshold. In
another embodiment, the health threshold 1020 may indicate
an average health value to maintain. In some embodiments,
the health threshold 1020 may indicate an average health
value over a period of time. In other embodiments, the health

US 9,098,335 B2

75

threshold 1020 may indicate a relative percentage of services
that change from an active to inactive state or from an up to a
down state.

The connection management mechanism 610, also
referred to as a connection manager or a virtual server switch,
comprises software, hardware, or any combination of soft-
ware and hardware having logic, functions or operations for
receiving and managing requests, connections and commu-
nications from one or more clients 102A-102N. In one
embodiment, the connection manager 610 receives or inter-
cepts transport layer connection requests and/or communica-
tions between the clients 102A-102N and one or more ser-
vices 270A-270N. The connection manager 610 may include
an application, program, service, process, task, thread or any
type and form of executable instructions. In response to
receiving a client communication, the connection manager
610 identifies, determines or selects a vServer 275 for pro-
cessing a received communication from a client 102.

The connection manager 610 may operate responsive to the
load monitor 420 and/or the health detector 1002. The load
monitor 420 may monitor the measured health 1025. In some
embodiments, the load monitor 420 and/or health detector
1002 measures the health on a predetermined frequency. In
one embodiment, the load monitor 420 and/or health detector
1002 measures the health responsive to any events, such as
receipt of a network packet. In other embodiments, the load
monitor 420 and/or health detector 1002 may determine
whether or not the measured health 1025 is less than the
health threshold 1020.

If the connection manager 610 determines from the load
monitor 420 and/or health detector 1002 that the measured
health 1025 of a first vServer 275A falls below the health
threshold 1020, the connection manager 610 directs client
requests for the services managed by the first vServer 275A to
a second vServer 275n. The second vServer 275z may be
configured or established as backup server to the first vServer
275A. For example, the first vServer 275 A may be designated
a primary vServer 275A and the second vServer 275N as
backup vServer 275N. In another embodiment, the second
vServer 275N may be another virtual server—primary,
redundant, or otherwise—for managing the services 270A-
270N. In yet another embodiment, the second vServer 275N
is configures or designated as the spillover virtual server for
the first vServer 275A. In some cases, the second vServer
275N is established upon determining the first vServer
275275A fall below the health threshold 1020. In other cases,
the vServer 275N is already operating or executing on the
appliance 200.

In some embodiments, the connection manager 270 directs
new client request requests to the second vServer 275. In one
embodiment, if the request is from a connection already
established with the first vServer 275A, the connection man-
ager 610 may direct the request to the first vServer 275A even
if the health threshold 1020 is exceeded or fallen below. This
may be referred to as connection or session persistence. In
another embodiment, the connection manager 610 directs any
client requests to the second vServer 275, for example, even
a request of a previously established connection.

In one embodiment, the connection manager 610 directs
client requests to the second vServer 275N while the first
vServer 275 has a measured health 1025 greater than the
health threshold 1020. In another embodiment, the connec-
tion manager 610 directs clients requests back to the first
vServer upon determining that the measured health 1025 of
the first vServer 275 has increased above the health threshold
1020. In some embodiment, the connection manager 610
determines which of the first vServer 275A and the second

25

30

40

45

55

76

vServer 275N has the highest health or is the least nearest to
the corresponding health threshold 1020 and directs the client
requests to the determined vServer. In other embodiments and
in the case of multiple vServers 275A-275N falling below a
health threshold 1020, the connection manager 610 deter-
mines which vServer 275A-275N falls below its correspond-
ing threshold 1020 the least and directs the client requests to
the determined vServer.

Upon detecting the health threshold 1020 has been reached
for the first vServer 275A and/or the second vServer 275N,
the connection management mechanism 610, in one embodi-
ment, may determine not to establish another spillover
vServer 275N but instead redirects the client 102 directly to a
server 106 or otherwise to bypass the appliance 200. For
example, the connection management mechanism 610 may
determine the health threshold 1020B for the spillover
vServer 275N has been reached and may redirect the client
102 to bypass the appliance 200 instead of establishing a third
vServer 275N for spillover. In these embodiments, the con-
nection management mechanism 610 may transmit a redirect
Uniform Resource Locator (URL) 660 to the client 102 for
the client 102 to connect to in response to the client’s con-
nection request. The URL 660 may identify any one of the
servers 106 or services 270.

In some embodiments, the appliance 200 via a load moni-
tor 420 and/or health detector 1002 measures and monitors
the health of the second virtual server 275N. The second
vServer 275N may have the same health threshold 1020 or a
different health threshold 1020 as the first vServer 275A. If
the connection manager 610 determines from the load moni-
tor 420 and/or health detector 1002 that the measured health
1025N of the second vServer 275N falls below the health
threshold 1020, the connection manager 610 directs client
requests for the services managed by the second vServer
275A to another vServer 275N, such as the first vServer 275A
or a third vServer 275B. The second vServer 275N may have
athird vServer 275B designated as backup virtual server or a
spillover virtual server. The health threshold management
techniques described herein may be used for a chain or plu-
rality of virtual servers and spillover virtual servers, each with
a health threshold and designated backup or spillover virtual
server.

The appliance via the connection manager directs client
requests to the primary vServer 275 or any backup or spillover
vServer 275 based on measured health 1025 in view of the
established health threshold 1020. The appliance 200 may
dynamically adjust any health threshold 1020 for any vServer
275 based on any performance or operational characteristics
of the appliance, vServer, bandwidth, network connection,
client or server. In one embodiment, the appliance may deter-
mine that the established health threshold 1020 is set rela-
tively low in comparison to the measured health 1025 and
determines to dynamically increase the health threshold
1020. For example, the appliance may adjust to the health
threshold 1020 within a certain percentage or threshold of the
measured health. In another embodiment, the appliance may
determine that the established health threshold 1020 is set
relatively high in comparison to the measured health 1025
and determines to dynamically decrease the health threshold
1020.

In one case, the appliance 200 dynamically sets or estab-
lishes a health threshold 1020 by measuring health 1025 of a
vServer 275 for a predetermined time period. For example,
upon startup of a vServer 275, the health detector 1002 may
measure health for a predetermined or configured time
period, and then based on an average, peak or range of health
measurements set the health threshold 1020. In another case,

US 9,098,335 B2

77

the appliance 200 may dynamically adjust a health threshold
1020 based on adding or removing services 270A-270» man-
aged by a vServer 275. In still other embodiments, the appli-
ance 200 may dynamically adjust the health threshold 1020 of
a vServer 275 based on information and feedback from a
monitoring agent 197 and/or monitoring service 198. In still
other embodiments, the appliance 200 may dynamically
adjust health thresholds 1020 based on one or more policies of
a policy engine 195.

Insome embodiment, the appliance 200 excludes a vServer
275 from a load computation or determination, or otherwise a
load balancing decision if the health 725 of the vServer 275
falls below the health threshold 1020. In these embodiments,
this may be done so that the other vServer 275A-275N which
carry the load for the excluded vServer 275 do not also
become overloaded. In other embodiments, the appliance 200
adjusts a weight used for the vServer 275 upon detecting the
vServer’s bandwidth 1025 exceeds the health threshold 1020.
For example, the weight of the vServer 275 may be adjusted
to minimize the impact to the other vServer 275A-275N for
not having the vServer 275 available to also service requests.

In some embodiments, the appliance or any component
thereof may adjust any one or more weight of any one of the
services or service groups and then recompute the health. The
appliance 200 may dynamically adjust any weight any service
or service group based on any performance or operational
characteristics of the appliance, vServer, bandwidth, network
connection, client or server.

Referring now to FIG. 10B, an embodiment of steps of a
method for practicing dynamic virtual server spillover man-
agement based on health is depicted. In briefoverview, at step
905, the appliance establishes a first virtual server 275A
which directs requests from a plurality of clients to a plurality
of services. At step 910, the appliance establishes a health
threshold for the first virtual server. At step 915, the appliance
monitors a status for each of the plurality of services. At step
950, the appliance measures and monitors the health 1025 of
the first vServer 275. At step 925, the appliance receives a
client request. At step 930, the appliance determines whether
or not the health threshold for the first vServer 275 A has been
exceeded. If not, at step 935, the appliance directs the client
request to the first vServer 275A. If the threshold has been
exceeded, the appliance at step 940 determines whether or not
to establish or use a second vServer 275N or provide a redirect
URL to the client 102. In one case, at step 945, the client is
redirected to the service and bypasses the first vServer 275A.
At step 950, the appliance may determine if the client is
persistent (referred to as being sticky) with the first vServer
275A orthe second vServer 275N. If the client is sticky to the
first vServer 275 A, the appliance may direct the request to the
first vServer 275 A at step 935. Otherwise, the appliance spills
over to an established second vServer 275N at step 955. The
method may continue at step 910 to monitor and perform
health based spillover management for the second vServer
275N.

In further detail, at step 905, an appliance establishes a first
virtual server 275 which manages connections and direct
requests from a plurality of clients to a first plurality of ser-
vices 270. In one embodiment, the appliance may establish
the virtual server upon startup of the appliance. In another
embodiment, the appliance may establish the virtual server in
response to a previously established virtual server exceeding
maximum connection threshold. In one embodiment, the
appliance may establish a plurality of virtual servers. In some
embodiments, a user configures and starts the first vServer

10

40

45

55

78

275. In other embodiments, the first vServer is configured,
established or designed by the appliance or a user as a primary
virtual server.

At step 910, the appliance may establish or otherwise pro-
vide a health threshold 1020 for the first vServer 275. In one
embodiment, the health threshold 1020 may be initially con-
figured by a user or administrator of the appliance. In another
embodiment, the health threshold 1020 may be initially deter-
mined by the appliance by monitoring the health of the
vServer 275 or by polling one or more services 270. In some
embodiments, the appliance 200 may use a default or prede-
termined health threshold 1020. For example, the appliance
may use a predetermined health threshold 1020 associated
with or based on the type of service 270.

At step 915, the appliance may monitor a status for each of
the services 270 using any means. In one embodiment, the
appliance may use a monitoring agent 420. In another
embodiment, the appliance may use a plurality of monitoring
agents 420. In one embodiment, the appliance may monitor
the status for each of the services at predetermined time
intervals, for example once every 0.01, 0.1, 0.2, 0.5, or 1
seconds. In another embodiment, the appliance may monitor
the status for each of the services 270 asynchronously or
based on any events.

At step 920, the appliance measures and monitors the
health of the first vServer 275A. The load monitor 420 and/or
health detector 1002 may compute, determine or otherwise
make health measurements 1025. In one embodiment, the
appliance determines the measured health 1025 of a vServer
275 on a predetermined frequency. In another embodiment,
the appliance determines the measured health 1025 of a
vServer 275 triggered by an event. In one case, the appliance
determines the measured health 1025 of a vServer 275 at the
request of a user. In some embodiments, the appliance 200
measures health as a percentage using any of the health com-
putations described in connection with FIG. 10A. In some
embodiments, the appliance may dynamically adjust the
health threshold 1020 based on health measurements. In other
embodiments, the appliance may dynamically adjust the
health threshold 1020 based on performance and/or opera-
tional characteristics of the appliance, the vServer 275, the
network connection, and/or the service 270.

At step 925, the appliance may receive a client request. In
one embodiment, the appliance intercepts the client request as
atransparent interception device. In another embodiment, the
client transmits the request to the appliance as a proxy. In
some embodiments, the appliance receives a client request to
open or establish a transport layer connection. In other
embodiments, the appliances receive a client request to
access a service via a previously established transport layer
connection. The transport layer request may be received from
any computing device including a client 102, server 106, or a
second appliance 200. In one embodiment, the request may
identify a type of service 270. For example, the request may
comprise a request for HTTP service. Or, for example, the
request may comprise a request for UDP service.

At step 930 the appliance may determine whether the mea-
sured health 1025 for a vServer 275 has reached or fallen
below the health threshold 1020. The appliance may compare
the current measured health 1025 for the first virtual server
with the current value of the health threshold 1020 for the first
virtual server. In other embodiments, the load monitor 420
and/or health detector 1002 may have already determined the
health threshold 1025 for the vServer 275 has been reached or
exceeded. In another embodiment, the appliance 200 may
determine if the health threshold 1025 has been reached
responsive to receiving the client request. [f the health thresh-

US 9,098,335 B2

79

old 1020 of the first virtual server has not been reached, the
appliance may provide the client request to the first virtual
server at step 935.

Ifthe appliance determines the health threshold 1020 of the
first virtual server has been reached, the appliance may estab-
lish, use or otherwise spillover to a second virtual server 275N
at step 940. In other embodiments, a second virtual server
275N may already have been established prior to some or any
of'the steps shown. In another embodiment, the second virtual
server 275N may be established responsive to determining
the health threshold 1020 has been reached. The second vir-
tual server may provide access to a second plurality of ser-
vices 270. In one embodiment, one or more of the second
plurality of services 270 may comprise the same type of
service 270 as one or more of the first plurality of services.
The appliance may then establish and/or adjust a health
threshold 1020 for the second virtual server. The appliance
may provide the client request to the second virtual server 275
at step 955.

In other embodiments, if the health threshold 1020 of the
first virtual server has been reached, the appliance may redi-
rect the client making the request to another resource. In one
embodiment, the appliance may transmit a URL to the client
comprising the address of a server 106 or service 270 such
that the client may bypass the appliance 200 and access the
server 106 or service 270 directly. In one embodiment, the
appliance may transmit a URL to the client comprising the
address of a second appliance 200. In still another embodi-
ment, the appliance 200 may redirect the client request to a
second appliance.

In another embodiment, the appliance identifies that the
measured health exceeds the health threshold and directs
client requests to the first vServer. In some embodiments, the
appliance identifies that one or more services that were pre-
viously down and the measure health now exceeds the health
threshold. In response to the health reaching or being above
the health threshold, the appliance may direct client request to
the first vServer instead of the second vServer.

At step 950, the appliance 200 may determine whether the
client making the request has a previously existing connec-
tion or session with either the first or a second virtual server.
In some embodiments, an appliance may assign a priority to
providing requests from a client to virtual servers that have
previously serviced or are currently servicing connections or
session from the client. For example, if a request is received
from a client, and the client has a currently existing connec-
tion with a first virtual server, the appliance 200 may provide
the request to the first virtual server even if the first virtual
server has reached or exceeded the bandwidth threshold. Or,
for example, if a client has a previous connection via a backup
virtual server, and the primary virtual server subsequently
falls below the health threshold 1020, the appliance 200 may
still provide a subsequent request from the client to the
backup virtual server. In one embodiment, a connection man-
agement mechanism 610, or other appliance component may
track previously established or current connections or session
so that incoming requests from a client can be provided to a
virtual server having previously serviced the connection or
session from the client.

At step 955, the appliance 200 may dynamically manage
virtual spillover based on health by directing or providing the
client request to the spillover or second vServer 275N. In
some embodiments, the appliance determines the second
vServer 275 is busy, unavailable or has exceeded its health
threshold or another threshold. In response, the appliance
may redirect the client at step 940 or provide the client request
to a third vServer 275B or another appliance 200'. In some

10

15

20

25

30

35

40

45

50

55

60

65

80

embodiments, the appliance has a plurality of vServers 275A-
275N managing the services 270 and determines which
vServer to direct the client request based on comparison of
each vServer’s measured health and/or health threshold. In
one case, the appliance provides the client request to one of a
plurality of backup or spillover vServers based on the best
measured health. In another case, the appliance provides the
client request to the vServer with the greatest difference
between the measured health and the health threshold.

Although an embodiment of method 1000 is generally
described above in regards to measuring and monitoring
health of a first vServer and spilling over to a second vServer,
any steps of the method may be performed for the second
vServer and a spillover server for the second vServer, and for
athird vServer, and so on. An embodiment of method 1000 or
any steps thereof may be practiced for a plurality of virtual
servers, such as a set of primary vServer managing the same
or different services. Another embodiment of method 1000 or
any steps thereof may be practiced for a chain of spillover
virtual servers, so thata second vServer spills over into a third
vServer based on health and so on.

H. Systems and Methods for Handling Spillover in Conjunc-
tion with Limit Parameters in a Multi-Core System

The systems and methods of the solution described herein
are directed towards handling spillover in conjunction with
limit parameters for resources used by a plurality of cores in
a multi-core system. In general overview, a pool manager
allocates a limited number of uses of a resource across a
plurality of packet processing engines operating on a plurality
of cores of a multi-core system. The pool manager divides the
limited number of uses into an exclusive quota pool and a
shared quota pool. The pool manager allocates to each packet
processing engine an exclusive number of uses of a resource,
wherein each exclusive number may be taken from the exclu-
sive quota pool. Each packet processing engine may use the
resource up to its exclusive number of uses without further
restrictions.

If a packet processing engine wishes to increase its use of
the resource beyond the exclusive number of uses, the packet
processing engine may request to the pool manager to borrow
uses from the shared quota pool. The pool manager may grant
the packet processing engine a batch number of uses from the
shared quota pool. When the packet processing engine com-
pletes one or more uses of the resources, the packet process-
ing engine may return borrowed uses (also referred to herein
as “quota”) to the shared quota pool.

At times, the pool manager may have already granted all
the uses from the shared quota pool to one or more packet
processing engines. In these situations, the pool manager may
evaluate the packet processing engines to determine if one of
the engines have available exclusive uses of the resource. The
pool manager may select an engine as the spillover engine for
the packet processing engine secking another use of the
resource. Thus, the request to use the resource is redirected to
and serviced by the spillover packet processing engine. As a
result, while a limited number of uses for a resource is being
distributed across a plurality of cores on a multi-core system,
a core receiving heavy traffic may nevertheless spillover into
another core that services the requests.

Referring now to FIG. 11, a block diagram of an embodi-
ment of a multi-core system 1145 that handles a limit param-
eter for one or more resources is depicted. The multi-core
system 1145 may comprise any of the embodiments of the
multi-core system of FIG. 5B. The multi-core system may
include a pool manager 1165 operating on any portion of the
multi-core system, such as any core, packet engine, or the
flow distributor. One of the cores 505 may be designated a

US 9,098,335 B2

81

master core for which the pool manager 1165 operates. The
other cores may also run a pool manager 1165 for communi-
cating with the master core regarding the use of the resource.
The pool manager 1165 may manage the use ofa resource and
limits thereof via an exclusive quota pool 1170 and/or a
shared quota pool 1175.

The pool manager 1165 may comprise any program, appli-
cation, process, task or set of executable instructions for
managing, allocating, distributing, and/or controlling the use
of a resource via quota pools. The pool manager 668 may
determine the limit for the number of uses of the resource, the
exclusive quota pool 1170, and the shared quota pool 1175.
The pool manager 668 may allocate batch numbers of uses to
packet processing engines 548 from the shared quota pool
1175.

In some embodiments, the pool manager 1165 executes on
a master core. In other embodiments, the pool manager 1165
executes as part of the flow distributors 550. In some embodi-
ments, the pool manager 1165 executes as part of a packet
processing engine 548. In various embodiments, the pool
manager 1165 may include a plurality of pool managers, each
of which may execute on a respective core of the plurality of
cores. The pool manager 1165 on the master core may control
and allocate the use of resources via the quota pools. Any pool
manager 1165 on any secondary core may request and receive
an allocation of the use of resources from the pool manager
1165 of the master core. In some embodiments, a pool man-
ager 1165 on any secondary core may request uses from the
exclusive quota pool 1170 allocated to the secondary core. In
other embodiments, a pool manager 1165 on any secondary
core may request a batch number of uses from the shared
quota pool 1175.

The pool manager 1165 on any secondary core may deter-
mine when the secondary core has reached its exclusive num-
ber of uses of the resource. In some embodiments, the pool
manager 1165 may communicate with the pool manager 1165
on the master core to determine the availability of uses in the
shared quota pool 1175. In some embodiments, the pool
manager 1165 on any secondary core may detect when the
secondary core has completed a use of a resource and whether
the secondary core has borrowed from the shared quota pool
1175. In these embodiments, the pool manager 1165 may
determine if the secondary core should return quota to the
shared quota pool 1175.

The exclusive quota pool 1170 may include a predeter-
mined number of uses that may be assigned or allocated to a
core or packet engine exclusively and/or without restrictions.
In one aspect, the exclusive quota pool provides a number of
exclusive uses to a resource. In some embodiments, an allo-
cation of an exclusive use from the exclusive quote pool to a
specific core or packet engine may not be shared or used by
another core or packet engine. Exclusive uses from the exclu-
sive quota pool 1170 may be divided or allocated across the
plurality of cores 505 in any manner. In some embodiments,
each core 505 may be assigned an exclusive number of uses of
the resource. In some embodiments, the exclusive quota pool
1170 may include a plurality of exclusive quota pools. Each
exclusive pool including an exclusive number of uses for a
respective core 505 or packet engine of that core.

The shared quota pool 1175 may include a predetermined
number of uses that may be shared and/or allocated to any
core or packet engine in a non-exclusive manner. In one
aspect, the shared quota pool provides a number of non-
exclusive uses to a resource. In some embodiments, an allo-
cation of a shared use from the shared quote pool to a specific
core or packet engine may be returned to the shared quota
pool to be used by another core or packet engine. In some

15

20

30

40

45

82

embodiments, a core 505 may access the shared quota pool
after the core 505 has reached its exclusive number of uses of
the resource. The shared quota pool 1175 may be accessed by
any core in the plurality of cores 505. A core 505 that has
reached its exclusive number of uses may borrow from the
shared quota pool 1175. The core 505 may request to borrow
uses from the shared quota pool 1175 by sending a request to
the pool manager 1165. The pool manager 1165 may deter-
mine if the shared quota pool 1175 has available uses of the
resource. If uses of the resource are available, the pool man-
ager 1165 may allocate a batch number of uses to the core
505. The pool manager 1165 may decrement the available
number of uses of the resource by the batch number of uses.
In some embodiments, the core 505 may implement a lock
upon borrowing uses from the shared quota pool 1175. When
the core 505 completes its use of a resource, the core 505 may
determine if it has borrowed from the shared quota pool 1175
and return quota.

The pool manager 1165 may allocate the limited uses of the
resource among the exclusive quota pool 1170 and the shared
quota pool 1175 in any manner by any algorithm or decision
making process. In some embodiments, the pool manager
1165 may make the allocation according to user input that
configures the quota pools. For example, a user may input a
percentage to designate the percentage of the limit to be
exclusive or shared. The user may input a number to designate
the number of exclusive uses for each core. The user may
input a number to designate the number of uses for the shared
quota pool 1175 such that the remaining uses may be placed
in the exclusive quota pool 1170. In other embodiments, the
pool manager 1165 may make the allocation according to a
predetermined number coded into the pool manager 1165. In
some embodiments, the pool manager 1165 may make the
allocation according to the performance of the multi-core
system. In these embodiments, the pool manager 1165 may
evaluate a metric associated with the performance of the
multi-core system and adjust the allocation of uses between
the exclusive quota pool 1170 and the shared quota pool 1175.

The pool manager 1165 may manage the uses of any type
or kind of resource. In some embodiments, the pool manager
1165 may manage the number of connections running in
parallel to a service. In some embodiments, the pool manager
1165 may manage the connection capacity each core may
access. In other embodiments, the pool manager 1165 may
manage the bandwidth of the multi-core system. In additional
embodiments, the pool manager 1165 may manage the num-
ber of bytes per second being processed by the cores 505. In
various embodiments, the pool manager 1165 may manage
the number of packets per second being processed by the
cores 505. In various embodiments, the pool manager 1165
may manage any type or form of resource use as described in
reference to FIGS. 6-10.

Referring now to FIG. 12 A, a flow diagram depicting steps
of'an embodiment of a method for allocating limited numbers
of uses of resources to a plurality of packet processing
engines operating on a plurality of cores is shown and
described. In brief overview, the method includes identifying
(step 1201) a limit for a number of uses of a resource across a
plurality of packet processing engines. The method further
includes establishing (step 1203) an exclusive quota pool for
the resource based on the limit. The method further includes
establishing (step 1205) a shared quota pool for the resource
based on the limit. The method further includes establishing
(step 1207) a batch number of uses to be provided from the
shared quota pool. The method further includes allocating
(step 1209) an exclusive number of uses from the exclusive
quota pool to a packet processing engine operating on a core.

US 9,098,335 B2

83

The pool manager 1165 may identify the limit for the
number of uses of a resource. This limit may be for the use of
the resource across the multi-core system, the plurality of
cores and/or packet engines, or any portion thereof. In some
embodiments, a user inputs the limit to the appliance 200. The
user may input the limit through the graphical user interface
(GUID) 210 or the command line interface (CLI) 212 as
described in FIG. 2A. The limit may be any type and form of
threshold on a number of uses of the resource. In some
embodiments, the pool manager 1165 identifies the limit
according to a parameter of the data communication network.
In many embodiments, the pool manager 1165 identifies the
limit as the maximum dynamic connection threshold, band-
width threshold, and/or health threshold described in refer-
ence to FIGS. 6-10.

In various embodiments, the limit may represent a maxi-
mum capacity of the resource. In some embodiments, the
limit may represent a physical capacity of the resource. In
other embodiments, the limit may represent a processing
capacity of the resource. For example, the limit may be a
maximum number of connections that may run in parallel to
a service. In many embodiments, the limit for a number of
uses for a resource may be absolute. Also the limit may
simply be a desired limit. The limit may represent a percent of
or a predetermined threshold of a capacity of the resource.
When the total number of uses of the resource reaches the
limit, the resource may deny further requests to use the
resource.

The pool manager 1165 may establish the exclusive quota
pool for the resource based on the limit. In various embodi-
ments, the pool manager 1165 establishes the exclusive quota
pool by applying a function to the limit. In many embodi-
ments, the exclusive quota pool may be a predetermined
percentage of the limit. In one example, the exclusive quota
pool may be established as 80% of the limit. If the number of
connections that may run in parallel to a service has a limit of
100, the exclusive quota pool may be 80 connections. In
various embodiments, the exclusive quota pool may be estab-
lished as the largest multiple of the number of cores less than
a predetermined percentage of the limit. In one example, the
limit is 100 connections to a service, the predetermined per-
centage is 80%, and the multi-core system has 7 cores. As 80
connections cannot be evenly distributed among 7 cores, the
exclusive quota pool is established as 77 connections, the
largest multiple of 7 that is less than 80.

The pool manager 1165 may establish the shared quota
pool for the resource based on the limit. The shared quota pool
may be established by subtracting the exclusive quota pool
from the limit. The pool manager 1165 may implement the
shared quota pool in a memory shared among the cores. In
some embodiments, the pool manager 1165 may implement
the shared quota pool using a data structure. The data struc-
ture may include variables associated with the limit and the
function applied to the limit that establishes the exclusive
quota pool. The data structure may include a variable associ-
ated with the number of uses in the shared quota pool. The
data structure may include a variable associated with the
available number of uses in the shared quota pool. The data
structure may include variables associated with the identity of
one or more packet processing engines 548 borrowing uses
from the shared quota pool. The data structure may include
variables associated with the number of uses being used by
each of the identified packet processing engines.

The pool manager 1165 may establish the batch number of
uses to be provided from the shared quota pool. The batch
number of uses may be the number of uses a packet process-
ing engine borrows whenever the packet processing engine

10

15

20

25

30

35

40

45

50

55

60

65

84

accesses the shared quota pool. The pool manager 1165 may
establish the batch number by applying a formula to the
shared quota pool. In one embodiment, the batch number of
uses may be 10% of the shared quota pool. If the shared quota
pool is, for example, 20 connections to a service, the batch
number is 2 connections. In another embodiment, the batch
number of uses may be 20% of the shared quota pool, thereby
resulting in a batch number of 4 for a shared quota pool of 20
connections. In various embodiments, if the application of the
formula to the size of the shared quota pool results in a batch
number less than 1, the batch number defaults to 1.

The pool manager 1165 may allocate an exclusive number
of'uses from the exclusive quota pool to each packet process-
ing engine 548. The exclusive number of uses may be the
number of times a packet processing engine 548 may use the
resource without further restrictions. If the packet processing
engine 548 wishes to use the resource beyond its exclusive
number, the packet processing engine 548 must borrow a
batch number of uses, if available, from the shared quota pool.
The pool manager 1165 may establish the exclusive number
of uses based on the exclusive quota pool. The exclusive
number of uses may be established by dividing the exclusive
quota pool by the number of cores. If the exclusive quota pool
divided by the number of cores is less than 1, then the exclu-
sive number of uses becomes 0. In these embodiments, all the
uses of the resource will belong to the shared quota pool, and
each packet processing engine 548 must borrow from the
shared quota pool whenever the packet processing engine 548
wishes to use the resource.

Referring now to FIG. 12B, a flow diagram depicting steps
of' an embodiment of a method for borrowing from a shared
quota pool is shown and described. In brief overview, the
method includes receiving (step 1211) a request to use a
resource. The method also includes determining (step 1213)
if the packet processing engine will exceed its exclusive num-
ber of uses by fulfilling the request. If the packet processing
engine will not exceed its exclusive number of uses, the
method also includes fulfilling (step 1215) the request to use
the resource. If the packet processing engine will exceed its
exclusive number of uses, the method also includes request-
ing (step 1217), a batch number of uses from the shared quota
pool. If the packet processing engine receives the batch num-
ber of uses, the engine fulfills the request (1215). If the pool
manager determines the shared quota pool has been
exhausted, the pool manager selects a packet processing
engine with available exclusive uses as a spillover engine
(step 1218). The spillover engine fulfills the request (step
1219).

The multi-core system 545 may receive the request to use
the resource. The multi-core system 545 may assign the
request to any core 505 of the plurality of cores. The multi-
core system 545 may assign the request to a core 505 based on
the type of request, the number of requests each core is
processing, or any other basis. The request to use the resource
may include a request to open a connection to aservice. In any
of these embodiments, the packet processing engine 548
operating on a core 505 may process the request.

The packet processing engine 548 may determine if the
packet processing engine 548 will exceed its exclusive num-
ber of uses by fulfilling the request. In various embodiments,
the packet processing engine 548 makes the determination by
comparing its exclusive number of uses to its current number
of'uses. If the current number of uses +1 is less than or equal
to the exclusive number of uses, the determination is negative.
Otherwise, the determination is positive. In many embodi-
ments, the packet processing engine 548 may maintain the
number of its current uses in a non-shared memory. In some

US 9,098,335 B2

85

embodiments, the packet processing engine 548 may include
a counter with the number of its current uses of the resource.

If the determination is negative, the packet processing
engine 548 may fulfill the request to use the resource. If the
determination is positive, the packet processing engine 548
may request a batch number of uses from the shared quota
pool before fulfilling the request. In various embodiments, the
packet processing engine 548 may send a request for a batch
number of uses to the pool manager 1165. The pool manager
1165 may determine if the shared quota pool has an available
batch number of uses. The pool manager 1165 may allocate a
batch number of uses from the shared quota pool to the
requesting packet processing engine 548. The pool manager
1165 may subtract a batch number of uses from the number of
available uses in the shared quota pool. The pool manager
1165 may send a message to the packet processing engine 548
indicating that the request for a batch number of uses has been
granted. In some embodiments, the packet processing engine
548 may acquire a lock before fulfilling the request with one
of the batch number of uses borrowed from the shared quota
pool. In various embodiments, the packet processing engine
548 sets a variable indicating that the packet processing
engine has borrowed uses from the shared quota pool.

In other embodiments, the pool manager 1165 may deter-
mine that the shared quota pool does not have a batch number
of uses available. In some embodiments, the pool manager
1165 may send a message to the packet processing engine 548
indicating that the request for a batch number of uses cannot
be fulfilled. In some embodiments, the pool manager 1165
may place the request for a batch number of uses and the
identity of the requesting packet processing engine 548 in a
queue. In some embodiments, the request for a batch number
of'uses in the queue may time out after a predetermined period
of time.

In various embodiments, the packet processing engine 548
may resend the request for a batch number of uses after a
predetermined period of time. In some embodiments, the
packet processing engine 548 may place the request to use the
resource in a queue. In some embodiments, the request in the
queue may time out after a predetermined period of time. In
various embodiments, the packet processing engine 548 may
send a message to the source of the request to use the resource
indicating that the request cannot be fulfilled at that time.

If the pool manager determines the shared quota pool has
been exhausted, the pool manager selects a packet processing
engine with available exclusive uses as a spillover engine
(step 1218). In some embodiments, the pool manager may
ping each packet processing engine to determine if the engine
has available exclusive uses. In other embodiments, the pool
manager may retrieve from a memory the number of exclu-
sive uses each packet processing engine is using. The pool
manager may select as the spillover engine the engine using
the fewest number of exclusive uses. The pool manager may
select engines to serve as spillover engines in a round robin
method. In some embodiments, the pool manager selects the
first detected engine using less than its exclusive number of
uses to be the spillover engine.

Once the spillover engine is selected, the pool manager
may store the identities of the spillover engine and the engine
being supported by the spillover engine. The pool manager
may also store identifying information about the request to
use the resource, such as a source IP address of the client
and/or session identifier. Then, the pool manager forwards the
request to the spillover engine for fulfillment (step 1219).

In various embodiments, the multi-core system may main-
tain connection or session persistence between a client 102
and the spillover packet processing engine handling requests

10

15

20

25

30

35

40

45

50

55

60

65

86

for the client 102. In some embodiments, the multi-core sys-
tem selects the spillover packet processing engine for han-
dling a client request even though the packet processing
engine that needed spillover support no longer exceeds its
exclusive number of uses and/or the shared quota pool has
uses to be allocated. In other embodiments, the multi-core
system selects the original packet processing engine for han-
dling a client request even though requests from other clients
are directed to the spillover packet processing engine. In one
embodiment, the multi-core system may select the original or
spillover packet processing engine based on which engine
most recently handled a request from the client 102.

Referring now to FIG. 12C, a flow diagram depicting steps
of'an embodiment of a method for returning quota to a shared
quota pool is shown and described. In brief overview, the
method includes detecting (step 1221) that use of a resource
has been completed. The method also includes determining
(step 1223) if the packet processing engine borrowed from the
shared quota pool. The method also includes, if the determi-
nation is negative, completing (step 1225) the use of the
resource. The method also includes, if the determination is
positive, determining (step 1227) if the number of completed
uses of the resource is greater than or equal to the batch
number. If the number of completed uses is not greater than or
equal to the batch number, the packet processing engine com-
pletes the use of the resource. If the number of completed uses
is greater than or equal to the batch number, the method
includes returning (step 1229) a batch number of uses to the
shared quota pool in conjunction with completing (step 1225)
the use of the resource.

In further detail, the packet processing engine 548 may
detect that use of a resource has been completed. In some
embodiments, the resource sends a message to the packet
processing engine 548 indicating that the use has been com-
pleted. In other embodiments, the packet processing engine
548 determines that a use has been completed after a prede-
termined amount of time. In these embodiments, the packet
processing engine 548 determines a use has been completed
because the use has timed out. In some embodiments, the
packet processing engine 548 may receive a message fromthe
source of the request to use the resource indicating that the
request has been aborted.

The packet processing engine 548 may determine if the
packet processing engine 548 borrowed from the shared
quota pool in one of many ways. In some embodiments, the
packet processing engine 548 may compare the number of its
current uses of the resource to its exclusive number of uses. If
the number of current uses exceeds the exclusive number of
uses, the packet processing engine 548 may determine that
borrowing occurred. In additional embodiments, the packet
processing engine 548 may evaluate a variable that the packet
processing engine 548 sets upon borrowing from the shared
quota pool. The packet processing engine 548 may determine
that borrowing occurred based upon the value of the variable.

If the packet processing engine 548 determines that the
packet processing engine did not borrow from the shared
quota pool, the packet processing engine 548 may complete a
use of the resource. In some embodiments, the packet pro-
cessing engine 548 may place the connection to the resource
in a reuse pool. The reuse pool may be exclusive to the packet
processing engine 548. In these embodiments, when the
packet processing engine 548 receives another request to use
the resource, the packet processing engine 548 may access
one of the connections to the resource in the reuse pool
instead of opening a new connection to access the resource. In
various embodiments, the packet processing engine 548 may
close the connection to the resource.

US 9,098,335 B2

87

If the packet processing engine determines 548 that the
packet processing engine 548 borrowed from the shared
quota pool, the packet processing engine 548 may determine
if the number of completed uses of the resource is greater than
or equal to the batch number. The packet processing engine
548 may make this determination by subtracting the exclusive
number of uses from the current number of uses and compar-
ing the result to the batch number. If the difference is less than
the batch number, the packet processing engine 548 may
complete a use of the resource and closes the connection to
the resource. If the difference is equal to or greater than the
batch number, the packet processing engine 548 may send a
message to the pool manager 1165 indicating the return of a
batch number of uses to the shared quota pool before com-
pleting the use and closing the connection. In these embodi-
ments, the packet processing engine 548 may relinquish the
lock acquired when the packet processing engine 548 bor-
rowed from the shared quota pool. In various embodiments,
upon receiving a message indicating that a batch number of
uses is being returned to the shared quota pool, the pool
manager 1165 may process requests for use of a resource in a
queue of requests.

Although the methods of FIGS. 11 through 12C may be
generally discussed in reference to a packet engine and a
spillover packet engine, the systems and methods of embodi-
ments of the present solution may be used for virtual servers
running on each core as part of the packet engine or separate
from a packet engine to determine spillover thresholds and
spillover persistence for virtual servers, such as any of the
embodiments of spillover management and spillover persis-
tence discussed in conjunction with FIGS. 7 to 10B.

Referring to FIG. 12D is another embodiment of steps of a
method for managing spillover limits using the quota based
allocation techniques described herein. In brief overview, at
step 1291, a spillover limit is identified for a multi-core device
intermediary to a plurality of clients and one or more servers.
The multi-code device may establish a virtual server 275 on
each of the cores or packet processing engines to manage the
services provided by the one or more servers. One or more of
the virtual servers may have a backup virtual server for han-
dling client requests when the virtual server reaches its spill-
over threshold. At step 1293, based on the spillover limit, the
pool manager of the device allocates a number of resources
uses to each of the virtual managers. The number of resources
may be allocated from an exclusive quota pool and/or a shared
quota pool. At step 1295, the device determines that one of the
plurality of virtual servers has reached or exhausted its allo-
cated number of resource uses. At step 1297, responsive to the
determination, the device forwards a received client request
to a backup virtual server. At step 1299, the device monitors
the service, the spillover limits and allocation of resource
uses.

In further details, at step 1291, the multi-core device may
be configured for any type of spillover limit, including but not
limited to connection based spillover, dynamic connection
based spillover, health based spillover and bandwidth bases
spillover. The spillover limit or threshold may be configured
as a maximum number of connections to a service of the one
or more services. The spillover limit may be configured a
dynamic connection threshold determined from a sum of a
connection capacity of each of the plurality of virtual servers.
The spillover limit may be configured as a bandwidth thresh-
old.

Although the device has multiple cores and multiple virtual
servers and/or packet engines operating on each core, a spill-
over limit may be configured or specified for the device itself.
The spillover limit may identify or specify the type of

40

45

55

88

resource—connection, health, bandwidth, etc. Using the pool
management techniques herein, the multi-core device may
allocate and manage the number of resource uses across the
cores, packet engines and/or virtual servers. In some aspects,
the multi-core device allocates and manages the numbers of
resource uses for the spillover limit to appear as a single core
device configured with a single spillover limit.

The multi-core device may be configured to operate or
execute one or more virtual servers on each core of the device.
Each of the virtual servers may manage one or more services
executing on one or more servers. For each virtual server, one
or more backup virtual servers may be configured, estab-
lished or otherwise provided to handle client requests for the
virtual server when the virtual server has reached its resource
allocation corresponding to the spillover limit.

At step 1293, using any embodiments of the resource man-
agement techniques described herein, the pool manager allo-
cates a number of resource uses corresponding to the spillover
limit across each of the cores or virtual servers operating on
each core. The pool manager may establish an exclusive
quota pool and/or shared quota pool for a total number of
resources uses for the resource, such as connections, health or
bandwidth of the spillover limit. In some embodiments, the
pool manager allocates a number of exclusive resources to
each core or virtual server from an exclusive quota pool. In
some embodiments, the pool manager allocates a number of
non-exclusive resource uses to each core or virtual server
from a shared quota pool. In some embodiments, the pool
manager allocates a number of resource uses to each core or
virtual server from both an exclusive quota pool and a shared
quota pool. In some embodiments, the pool manager may
allocate an equal number of resources uses across each core or
virtual server. In some embodiments, the pool manager may
allocate an unequal number of resources uses across each
core or virtual server. In some embodiments, the pool man-
ager may allocate number of resources uses across each core
or virtual server based on some weight assigned to the core or
virtual server.

At step 1295, the device determines that the number of
resources used by a virtual server of the plurality of virtual
servers has reached an allocated number of resource uses of
the virtual server. In some embodiments, the virtual server
determines that it has exhausted its allocated number of
resource uses. In some embodiments, the virtual server
requests additional resource uses from the pool manager. In
some embodiments, the pool manager does not have resource
uses to allocate to the virtual server. In some embodiments,
the pool manager determines not to allocate any more
resource uses to the virtual server. In some embodiments, the
virtual server reaches its corresponding portion of the spill-
over limit when the virtual server has reached its allocated
number of exclusive resource uses. In some embodiments, the
virtual server reaches its corresponding portion of the spill-
over limit when the virtual server has reached its allocated
number of non-exclusive resource uses. In some embodi-
ments, the virtual server reaches its corresponding portion of
the spillover limit when the virtual server has reached its
allocated number of exclusive and non-exclusive resource
uses. In some embodiments, the device reaches the spillover
limit when each of the virtual servers has reaches its allocated
number of exclusive and/or non-exclusive resources. In some
embodiments, the device reaches the spillover limit when
each of the virtual servers has reaches its corresponding por-
tion of the spillover limit.

At step 1297, the device forwards, responsive to the deter-
mination of step 1295, to a backup virtual server a request of
a client received by the device for the virtual server. In some

US 9,098,335 B2

89

embodiments, when any one virtual server of the plurality of
virtual servers reaches its corresponding portion of the spill-
over limit or its corresponding allocation of resource users,
the device redirects request to the virtual server to a corre-
sponding backup virtual server. In some embodiments, when
any all of the plurality of virtual servers reaches its corre-
sponding portion of the spillover limit or its corresponding
allocation of resource users, the device redirects requests to
any of the virtual servers to a backup virtual server. In some
embodiments, the connection manager determines when a
spillover conditions exists and determines to forwards
requests to a backup virtual server.

At step 1299, the device monitors the services and may
adjust the corresponding spillover limit. In some embodi-
ments, one core or packet engine may be designated as the
master core or packet engine for monitoring the service. In
some embodiments, one core or packet engine may be desig-
nated as the master core or packet engine for monitoring the
spillover limit. In some embodiments, one core or packet
engine may be designated as the spillover master. The master
core or packet engine may monitor one or more services
bound to or managed by the plurality of virtual servers. For
the case of spillover limits that change responsive to a state or
status of the service, the master core or packet engine may
adjust the spillover limit responsive to monitoring. For
example, in some embodiments of dynamic connection spill-
over, the master core or packet engine may increase or
decrease the dynamic connection spillover limit responsive to
a change in the capacity of connections. In some embodi-
ments of bandwidth spillover, the master core or packet
engine may increase or decrease the bandwidth spillover limit
responsive to a change in bandwidth capacity. In some
embodiments of health spillover, the master core or packet
engine may increase or decrease the health spillover limit
responsive to a change in health status of a service(s).

The spillover master core or packet engine may propagate
the change in spillover limits to each of the other cores or
packet engines. In some embodiments, the spillover master
may use any type and form of inter-core communications,
such as core-to-core messaging or shared memory.

In some embodiments, each of the cores, packet engines or
virtual servers may adapt or changes its allocation of a num-
ber of resource uses responsive to a change to the spillover
limit. Responsive to a lower spillover limit or a decrease in the
spillover limit, a virtual server or packet engine may return a
number of resource uses to the pool manager. In some
embodiments, a virtual server or packet engine may return a
number of exclusive resource uses to the exclusive quota
pool. In some embodiments, a virtual server or packet engine
may return a number of non-exclusive resource uses to the
shared quota pool. In some embodiments, a virtual server or
packet engine may return both a number of exclusive uses to
the exclusive quote pool and a number of non-exclusive
resource uses to the shared quota pool. Responsive to a higher
spillover limit or an increase in the spillover limit, a virtual
server or packet engine may request an additional number of
resource uses from the pool manager. In some embodiments,
a virtual server or packet engine may request an additional
number of exclusive resource uses to the exclusive quota
pool. In some embodiments, a virtual server or packet engine
may request an additional number of non-exclusive resource
uses to the shared quota pool. In some embodiments, a virtual
server or packet engine may request an additional number of
exclusive uses for, the exclusive quote pool and an additional
number of non-exclusive resource uses from the shared quota
pool. In some embodiments, responsive to changes in the
spillover limit, one packet engine or virtual server may return

10

15

20

25

30

35

40

45

50

55

60

65

90

a number of resource uses (exclusive, non-exclusive or oth-
erwise) while another packet engine or virtual server may
request an additional number of resource uses (exclusive,
non-exclusive or otherwise).

In some embodiments, the pool manager responsive to
changes in the spillover limit, changes the allocations of
resource uses across the plurality of cores, packet engines or
virtual servers. In some embodiments, the pool manager may
request a virtual server or packet engine to return a number of
resource uses, exclusive, non-exclusive or otherwise. In some
embodiments, the pool manager may increase for a virtual
server or packet engine a number of resource uses, exclusive,
non-exclusive or otherwise. In some embodiments, respon-
sive to changes in the spillover limit or responsive to moni-
toring, the pool manager may request one virtual server or
packet engine to return a number of resource uses, exclusive,
non-exclusive or otherwise while providing an increasing the
number of resource uses, exclusive, non-exclusive or other-
wise, for another virtual server or packet engine.

In view of changes to the spillover limit, the device may
perform spillover management to backup virtual servers
based on the changed spillover limits and/or reallocation of
number of resource uses across the virtual servers. In some
embodiments, if requests for a virtual spillover were directed
to a backup virtual server and the spillover limit increased or
the virtual server’s allocation of number of resource uses
increases, request may be sent back to the virtual server
instead of the backup virtual server. In some embodiments, if
requests for a virtual spillover were not directed to a backup
virtual server and the spillover limit decreased or the virtual
server’s allocation of number of resource uses decreases,
spillover management may be triggers and request directed to
the virtual server are redirected to the backup virtual server.

What is claimed:

1. A method of managing spillover via a plurality of cores
of a multi-core device intermediary to a plurality of clients
and one or more services, the method comprising:

a) identifying, for a device intermediary to a plurality of
clients and one or more services, a spillover limit of a
resource, the device comprising a plurality of virtual
servers operating on a corresponding core of a plurality
of cores of the device;

b) allocating, by a pool manager of the device, to each of
the plurality of virtual servers, a number of uses of a
resource from an exclusive quota pool and shared quota
pool based on the spillover limit, the number of uses of
the resources comprising a number of times the resource
can be used;

¢) determining, by the device, that the number of times the
resource is used by a virtual server of the plurality of
virtual servers has reached the allocated number of uses
of the resource of the virtual server; and

d) forwarding, by the device responsive to the determina-
tion, to a backup virtual server a request of a client of the
plurality of clients received by the device for the virtual
server.

2. The method of claim 1, wherein step (a) further com-
prises identifying for the device the spillover limit as a maxi-
mum number of connections to a service of the one or more
services.

3. The method of claim 1, wherein step (a) further com-
prises identifying for the device the spillover limit as a
dynamic connection threshold, the dynamic connection
threshold comprising a sum of a number of connections of
each of the plurality of virtual servers.

4. The method of claim 1, wherein step (b) further com-
prises allocating, by the pool manager, the number of uses of

US 9,098,335 B2

91

the resource comprising a number of exclusive uses from the
exclusive quota pool and a number of non-exclusive uses
from the shared quota pool.

5. The method of claim 1, wherein step (c) further com-
prises requesting, by the virtual server, a resource use from
the pool manager upon reaching the virtual server’s alloca-
tion of uses of the resource.

6. The method of claim 1, wherein step (c) further com-
prises determining, by the device, that the number of uses of
the resource available from the pool manager for the virtual
server has been exhausted.

7. The method of claim 1, further comprising changing the
spillover limit to a lower number of resource uses and respon-
sive to the change, one or more of the plurality of virtual
servers returning a portion of the allocated number of uses of
the resource to the pool manager.

8. The method of claim 1, further comprising changing the
spillover limit to a higher number of uses of the resource and
responsive to the change, one or more the plurality of virtual
servers requesting from the pool manager an additional the
number of uses of the resource.

9. The method of claim 1, further comprising designating a
first core of the plurality of cores as spillover master for
monitoring the service and changing the spillover limit based
on monitoring.

10. A system for managing spillover via a plurality of cores
of a multi-core device intermediary to a plurality of clients
and one or more services, the system comprising:

a device intermediary to a plurality of clients and one or

more services, the device comprising:

a spillover limit of a resource;

aplurality of packet engines operating on a corresponding

core of a plurality of cores of the device;

apool manager allocating to each of the plurality of packet

engines a number of uses of a resource from an exclusive
quota pool and shared quota pool based on the spillover
limit, the number of uses of the resources comprising a
number of times the resource can be used; and

avirtual server of a packet engine of the plurality of packet

engines, the virtual server managing client requests to
one or more services;

25

30

92

wherein the device determines that the number of time the
resource is used by a packet engine of the plurality of
packet engine has reached the allocated number of uses
of the resource of the packet engine, and responsive to
the determination, forwards to a backup virtual server a
request of a client of the plurality of clients received by
the device for the virtual server.

11. The system of claim 10, wherein the device identifies
the spillover limit as a maximum number of connections to a
service of the one or more services.

12. The system of claim 10, wherein the device identifies
the spillover limit as a dynamic connection threshold, the
dynamic connection threshold comprising a sum of a number
of connections of each of the plurality of virtual servers.

13. The system of claim 10, wherein the pool manager
allocates the number of uses of the resource comprising a
number of exclusive uses from the exclusive quota pool and a
number of non-exclusive uses from the shared quota pool.

14. The system of claim 10, wherein the packet engine
requests a resource use from the pool manager upon reaching
the packet engine’s allocation of the number of uses of the
resource.

15. The system of claim 10, wherein the device determines
that the number of uses of the resource available from the pool
manager has been exhausted.

16. The system of claim 10, wherein the device changes the
spillover limit to a lower number of uses of the resource and
responsive to the change, one or more of the plurality of
packet engines returning a portion of the allocated number of
uses of the resource to the pool manager.

17. The system of claim 10, wherein the device changes the
spillover limit to a higher number of uses of the resource and
responsive to the change, one or more the plurality of packet
engines requesting from the pool manager an additional the
number of resource uses.

18. The system of claim 10, wherein the device designates
a first packet engine of the plurality of packet engines as
spillover master for monitoring the service and changing the
spillover limit based on monitoring.

#* #* #* #* #*

